Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.1 Detail

Research progress on olfactory diagnosis of smart traditional Chinese  medicine

Published on Jan. 30, 2024Total Views: 711 times Total Downloads: 256 times Download Mobile

Author: ZHANG Mei1 2 ZHONG Rui 1 WEI Xuxu 2 ZHANG Xiaoyu 3 DAI Qianqian 2 LIN Jiayan 1 ZHAO Chen 3 JIANG Yin 3 SHANG Hongcai 2

Affiliation: 1. School of Chinese Materia Medica , Beijing University of Chinese Medicine, Beijing 102488, China 2. Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China 3. Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China

Keywords: Digital-intelligence traditional Chinese medicine Olfactory diagnosis Volatile organic compounds Exhaled breath analysis Instruments for traditional Chinese medicine diagnosis and treatment Disease diagnosis

DOI: 10.12173/j.issn.1004-4337.202401029

Reference: Zhang M, Zhong R, Wei XX, Zhang XY, Dai QQ, Lin JY, Zhao C, Jiang Y, Shang HC. Research progress on olfactory diagnosis of smart traditional Chinese medicine[J]. Journal of Mathematical Medicine, 2024, 37(1): 2-21. DOI: 10.12173/j.issn.1004-4337.202401029[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Olfactory diagnosis is an important part of the “listening and smell diagnosis” in the four diagnostics of traditional Chinese medicine (TCM)—Inspection, listening/smell, inquiring, and palpation. It differentiates diseases and TCM syndromes by identifying smells. Olfactory diagnosis has a long history in the clinical application of TCM. However, the objectification and standardization of olfactory diagnosis are urgently needed. Embracing the tremendous progress in the fields of analytical chemistry, biomedical engineering and artificial intelligence, TCM has stepped into the “smart” era. This has been contributing to the growing interest in olfactory diagnosis as a non-invasive diagnostic method. This paper provides a review of the research progress in olfactory diagnosis of smart TCM. The research subjects, analytical methods, and scientific instruments of olfactory diagnosis of smart TCM were summarized, the relevant medical applications were outlined, and the current challenges were proposed. The great research value of olfactory diagnosis of smart TCM as well as its future development is also envisioned.

Full-text
Please download the PDF version to read the full text: download
References

[1] 赵文, 张佳, 徐佳君, 等. 四诊合参智能化发展现状及实现路径[J]. 中医杂志, 2020, 61(1): 58-62, 67. [Zhao W, Zhang J, Xu JJ, et al. Four diagnosis comprehensive analysis intellectualization: development status and pahts[J]. Journal of Traditional Chinese Medicine, 2020, 61(1): 58-62, 67.] DOI: 10.13288/j.11-2166/r.2020.01.013.

[2] 李灿东. 中医诊断学[M]. 北京: 中国中医药出版社, 2016. [Li CD. Diagnostics in Chinese Medicine[M]. Beijing: China Press of Traditional Chinese Medicine, 2016.]

[3] 于国东,高也陶. 五气参两:嗅诊的渊源、式微与复兴[J]. 医学与哲学, 2021, 42(13): 58-61, 72. [Yu GD, Gao YT. Consulting and contrasting FIVE-QI: the origin,decline and revival of olfactory diagnosis[J]. Medicine & Philosophy, 2021, 42(13): 58-61, 72.] DOI: 10.1204/j.issn.1002-0772.2021.13.13.

[4] Dan X, Wechter N, Gray S, et al. Olfactory dysfunction in aging and neurodegenerative diseases[J]. Ageing Res Rev, 2021, 70: 101416. DOI: 10.1016/j.arr.2021.101416.

[5] Schubert CR, Fischer ME, Pinto AA, et al. Odor detection thresholds in a population of older adults[J]. Laryngoscope, 2017, 127(6): 1257-1262. DOI: 10.1002/lary.26457.

[6] Pfabigan DM, Vezzani C, Thorsby PM, et al. Sex difference in human olfactory sensitivity is associated with plasma adiponectin[J]. Horm Behav, 2022, 145: 105235. DOI: 10.1016/j.yhbeh.2022.105235.

[7] Laska M, Wieser A, Hernandez Salazar LT. Sex-specific differences in olfactory sensitivity for putative human pheromones in nonhuman primates[J]. J Comp Psychol, 2006, 120(2): 106-112. DOI: 10.1037/0735-7036.120.2.106.

[8] Oleszkiewicz A, Alizadeh R, Altundag A, et al. Global study of variability in olfactory sensitivity[J]. Behav Neurosci, 2020, 134(5): 394-406. DOI: 10.1037/bne0000378.

[9] Mignot C, Schunke A, Sinding C, et al. Olfactory adaptation: recordings from the human olfactory epithelium[J]. Eur Arch Otorhinolaryngol, 2022, 279(7): 3503-3510. DOI: 10.1007/s00405-021-07170-0.

[10] Hoenen M, Wolf OT, Pause BM. The impact of stress on odor perception[J]. Perception, 2017, 46(3-4): 366-376. DOI: 10.1177/0301006616688707.

[11] 商洪才, 张晓维. 数智融合促进中医药传承创新发展[J]. 北京中医药, 2023, 42(5): 464-466. [Shang HC, Zhang XW. Integrating digital intelligence to promote the inheritance, innovation and development of traditional Chinese medicine[J]. Beijing Journal of Traditional Chinese Medicine, 2023, 42(5): 464-466.] DOI: 10.16025/j.1674-1307.2023.05.001.

[12] 商洪才. 临床“有毒”中药数智融合研究新模式:中药循证毒理学的提出[J].科学通报, 2022, 67(2): 118-124. [Shang HC. New mode of data-intelligence fusion research on clinical “toxic” Chinese medicines: the proposal of evidence-based Chinese medicine toxicology[J]. Chinese Science Bulletin, 2022, 67(2): 118-124.] DOI: 10.1360/TB-2021-1010.

[13] 陈昭, 郑蕊, 邱瑞瑾, 等. 基于数智融合的中西药并用代谢性药物肝损伤预警方法的构建[J]. 中华中 医药杂志, 2023, 38(4): 1413-1417. [Chen Z, Zheng Rui, Qiu RJ, et al. Construction of early warning methods of metabolic drug-induced liver injury with traditional Chinese medicine and Western medicine combination based on digital-intelligence fusion[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2023, 38(4): 1413-1417.] http://qikan.cqvip.com/Qikan/Article/Detail?id=7109629539&from=Qikan_Search_Index

[14] 李承木, 邬小萍. 呼出气体组分分析在临床实践中的应用进展[J]. 新发传染病电子杂志, 2023, 8(2): 78-81. [Li CM, Wu XP. Research progress in component analysis of exhaled breath[J]. Electronic Journal of Emerging Infectious Diseases, 2023, 8(2): 78-81.] DOI: 10.19871/j.cnki.xfcrbzz.2023.02.017.

[15] 刘莺. 闻气味的研究与展望[J]. 中医药信息, 1991(1): 9-12. [Liu Y. Research and prospects of smell and odor[J]. Information on Traditional Chinese Medicine, 1991(1): 9-12.] DOI: 10.19656/j.cnki.1002-2406.1991.01.005.

[16] Li Z, Li J, Fu R, et al. Halitosis: etiology, prevention, and the role of microbiota[J]. Clin Oral Investig, 2023, 27(11): 6383-6393. DOI: 310.1007/s00784-023-05292-9.

[17] Lowe H, Toyang N, Steele B, et al. The current and potential application of medicinal cannabis products in dentistry[J]. Dent J (Basel), 2021, 9(9): 106. DOI: 10.3390/dj9090106.

[18] Moldovanyi CP. Fruity breath odor: two major implications[J]. Nursing, 1988, 18(3): 65-69. DOI: 10.1097/00152193-198803000-00027.

[19] Van den Velde S, Nevens F, Van Hee P, et al. GC-MS analysis of breath odor compounds in liver patients[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2008, 875(2): 344-348. DOI: 10.1016/j.jchromb.2008.08.031.

[20] Zhang X, Frankevich V, Ding J, et al. Direct mass spectrometry analysis of exhaled human breath in real-time[J]. Mass Spectrom Rev, 2023. DOI: 10.1002/mas.21855.

[21] Amann A, Costello Bde L, Miekisch W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. J Breath Res, 2014, 8(3): 034001. DOI: 10.1088/1752-7155/8/3/034001.

[22] de Lacy Costello B, Amann A, Al-Kateb H, et al. A review of the volatiles from the healthy human body[J]. J Breath Res, 2014, 8(1): 014001. DOI: 10.1088/1752-7155/8/1/014001.

[23] Amann A, Mochalski P, Ruzsanyi V, et al. Assessment of the exhalation kinetics of volatile cancer biomarkers based on their physicochemical properties[J]. J Breath Res, 2014, 8(1): 016003. DOI: 10.1088/1752-7155/8/1/016003.

[24] Pleil JD, Stiegel MA, Risby TH. Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders[J]. J Breath Res, 2013, 7(1): 017107. DOI: 10.1088/1752-7155/7/1/017107.

[25] Amann A, Miekisch W, Schubert J, et al. Analysis of exhaled breath for disease detection[J]. Annu Rev Anal Chem (Palo Alto Calif), 2014, 7: 455-482. DOI: 10.1146/annurev-anchem-071213-020043.

[26] Mäkitie AA, Almangush A, Youssef O, et al. Exhaled breath analysis in the diagnosis of head and neck cancer[J]. Head Neck, 2020, 42(4): 787-793. DOI: 10.1002/hed.26043.

[27] Einoch Amor R, Nakhleh MK, Barash O, et al. Breath analysis of cancer in the present and the future[J]. Eur Respir Rev, 2019, 28(152): 190002. DOI: 10.1183/ 16000617.0002-2019.

[28] Kim C, Raja IS, Lee JM, et al. Recent trends in exhaled breath diagnosis using an artificial olfactory system[J]. Biosensors (Basel), 2021, 11(9): 337. DOI: 10.3390/bios11090337.

[29] Chung J, Akter S, Han S, et al. Diagnosis by volatile organic compounds in exhaled breath from patients with gastric and colorectal cancers[J]. Int J Mol Sci, 2022, 24(1): 129. DOI: 10.3390/ijms24010129.

[30] Douglas IS. New diagnostic methods for pneumonia in the ICU[J]. Curr Opin Infect Dis, 2016, 29(2): 197-204. DOI: 10.1097/QCO.0000000000000249.

[31] van Oort PM, de Bruin S, Weda H, et al. Exhaled breath metabolomics for the diagnosis of pneumonia in intubated and mechanically-ventilated intensive care unit (ICU)-patients[J]. Int J Mol Sci, 2017, 18(2): 449. DOI: 10.3390/ijms18020449.

[32] Mahairidou A, Rodopoulou S, Tomos I, et al. Exhaled breath condensate acidification occurs during surgery for abdominal cancer[J]. Anticancer Res, 2017, 37(6): 3315-3321. DOI: 10.21873/anticanres.11700.

[33] Pabst F, Miekisch W, Fuchs P, et al. Monitoring of oxidative and metabolic stress during cardiac surgery by means of breath biomarkers: an observational study[J]. J Cardiothorac Surg, 2007, 2: 37. DOI: 10.1186/1749-8090-2-37.

[34] Fernández Del Río R, O’Hara ME, Pemberton P, et al. Elimination characteristics of post-operative isoflurane levels in alveolar exhaled breath via PTR-MS analysis[J]. J Breath Res, 2016, 10(4): 046006. DOI: 10.1088/1752-7155/10/4/046006.

[35] Boshier PR, Mistry V, Cushnir JR, et al. Breath metabolite response to major upper gastrointestinal surgery[J]. J Surg Res, 2015, 193(2): 704-712. DOI: 10.1016/j.jss.2014.09.004.

[36] Bruderer T, Gaisl T, Gaugg MT, et al. On-line analysis of exhaled breath focus review[J]. Chem Rev, 2019, 119(19): 10803-10828. DOI: 10.1021/acs.chemrev.9b00005.

[37] 于晓飞, 王醊恩, 董正平, 等. 《黄帝内经》中“汗”的内涵简析[J]. 中国中医基础医学杂志, 2017, 23(9): 1190-1193. [Yu XF, Wang ZE, Dong ZP, et al. Connotation of sweating in the Inner Canon of Huang-di[J]. Journal of Basic Chinese Medicine, 2017, 23(9): 1190-1193.] DOI: 10.19945/j.cnki.issn.1006-3250.2017.09.003.

[38] 罗涛, 周创, 周继刚, 等. 狐臭外用古方用药分析 [J]. 中医学报, 2015, 30(3): 460-462. [Luo T, Zhou C, Zhou JG, et al. Medication analysis of external ancient prescriptions for the treatment of body odor[J]. Acta Chinese Medicine, 2015, 30(3): 460-462.] DOI: 10.16368/j.issn.1674-8999.2015.03.157.

[39] Monedeiro F, Dos Reis RB, Peria FM, et al. Investigation of sweat VOC profiles in assessment of cancer biomarkers using HS-GC-MS[J]. J Breath Res, 2020, 14(2): 026009. DOI: 10.1088/1752-7163/ab5b3c.

[40] Leemans M, Cuzuel V, Bauër P, et al. Screening of breast cancer from sweat samples analyzed by 2-dimensional gas chromatography-mass spectrometry: a preliminary study[J]. Cancers (Basel), 2023, 15(11): 2939. DOI: 10.3390/cancers15112939.

[41] Maa EH, Arnold J, Bush CK. Epilepsy and the smell of fear[J]. Epilepsy Behav, 2021, 121 (Pt A): 108078. DOI: 10.1016/j.yebeh.2021.108078.

[42] Zamkah A, Hui T, Andrews S, et al. Identification of suitable biomarkers for stress and emotion detection for future personal affective wearable sensors[J]. Biosensors (Basel), 2020, 10(4): 40. DOI: 10.3390/bios10040040.

[43] Choi MJ, Oh CH. 2nd dimensional GC-MS analysis of sweat volatile organic compounds prepared by solid phase micro-extraction[J]. Technol Health Care, 2014, 22(3): 481-488. DOI: 10.3233/THC-140807.

[44] 李文文. 中医症状性质特征的研究[D]. 济南:山东中医药大学, 2014. [Li WW. A research on the symptom attributes of Chinese medicine[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2014.] https://cdmd.cnki.com.cn/article/cdmd-10441-1015506789.htm

[45] Peltrini R, Cordell RL, Ibrahim W, et al. Volatile organic compounds in a headspace sampling system and asthmatics sputum samples[J]. J Breath Res, 2021, 15(2): 027102. DOI: 10.1088/1752-7163/abcd2a.

[46] Phillips M, Cataneo RN, Condos R, et al. Volatile biomarkers of pulmonary tuberculosis in the breath[J]. Tuberculosis (Edinb), 2007, 87(1): 44-52. DOI: 10.1016/j.tube.2006.03.004.

[47] Suarez-Cuartin G, Giner J, Merino JL, et al. Identification of Pseudomonas aeruginosa and airway bacterial colonization by an electronic nose in bronchiectasis[J]. Respir Med, 2018, 136: 111-117. DOI: 10.1016/j.rmed.2018.02.008.

[48] Thompson R, Stephenson D, Sykes HE, et al. Detection of β-alanyl aminopeptidase as a biomarker for Pseudomonas aeruginosa in the sputum of patients with cystic fibrosis using exogenous volatile organic compound evolution[J]. RSC Adv, 2020, 10(18): 10634-10645. DOI: 10.1039/C9RA08386C.

[49] Nizio KD, Perrault KA, Troobnikoff AN, et al. In vitro volatile organic compound profiling using GC×GC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study[J]. J Breath Res, 2016, 10(2): 026008. DOI: 10.1088/1752-7155/10/2/026008.

[50] 吴邦华, 童映芳, 叶能权. GC/MS法检测呕吐物中灭多威[J]. 中国职业医学, 2001, 28(2): 48. [Wu BH, Tong YF, Ye NQ. Detection of methomyl in vomitus by GC/MS[J]. China Occupational Medicine, 2001, 28(2): 48.] DOI: 10.3969/j.issn.1000-6486.2001.02.029.

[51] 覃华开, 莫岳, 何伟仪, 等. GC-MS法快速检验食材及呕吐物中的氟乙酸钠[J]. 刑事技术, 2022, 47(2): 167-171. [Qin HK, Mo Y, He WY, et al. GC-MS rapidly determining sodium fluoroacetate in samples of food poisoning[J]. Forensic Science and Technology, 2022, 47(2): 167-171.] DOI: 10.16467/j.1008-3650.2021.0139.

[52] Course C, Watkins WJ, Müller CT, et al. Volatile organic compounds as disease predictors in newborn infants: a systematic review[J]. J Breath Res, 2021, 15(2): 024002. DOI: 10.1088/1752-7163/abe283.

[53] Navaneethan U, Parsi MA, Lourdusamy D, et al. Volatile organic compounds in urine for noninvasive diagnosis of malignant biliary strictures: a pilot study[J]. Dig Dis Sci, 2015, 60(7): 2150-2157. DOI: 10.1007/s10620-015-3596-x.

[54] Probert C, Greenwood R, Mayor A, et al. Faecal volatile organic compounds in preterm babies at risk of necrotising enterocolitis: the DOVE study[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(5): 474-479. DOI: 10.1136/archdischild-2019-318221.

[55] Zygulska AL, Pierzchalski P. Novel diagnostic biomarkers in colorectal cancer[J]. Int J Mol Sci, 2022, 23(2): 852. DOI: 10.3390/ijms23020852.

[56] Vernia F, Valvano M, Fabiani S, et al. Are volatile organic compounds accurate markers in the assessment of colorectal cancer and inflammatory bowel diseases? A review[J]. Cancers (Basel), 2021, 13(10): 2361. DOI: 10.3390/cancers13102361.

[57] Chan DK, Leggett CL, Wang KK. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds[J]. World J Gastroentero, 2016, 22(4): 1639-1649. DOI: 10.3748/wjg.v22.i4.1639.

[58] Karamanou M, Androutsos G. Antoine-Laurent de Lavoisier (1743-1794) and the birth of respiratory physiology[J]. Thorax, 2013, 68(10): 978-979. DOI: 10.1136/thoraxjnl2013-203840.

[59] Langford VS, Graves I, McEwan MJ. Rapid monitoring of volatile organic compounds: a comparison between gas chromatography/mass spectrometry and selected ion flow tube mass spectrometry[J]. Rapid Commun Mass Spectrom, 2014, 28(1): 10-18. DOI: 10.1002/rcm.6747.

[60] Xiang L, Wu S, Hua Q, et al. Volatile organic compounds in human exhaled breath to diagnose gastrointestinal cancer: a meta-analysis[J]. Front Oncol, 2021, 11: 606915. DOI: 10.3389/fonc.2021.606915.

[61] El Manouni El Hassani S, Soers RJ, Berkhout DJC, et al. Optimized sample preparation for fecal volatile organic compound analysis by gas chromatography-mass spectrometry[J]. Metabolomics, 2020, 16(10): 112. DOI: 10.1007/s11306-020-01735-6.

[62] Seong SH, Kim HS, Lee YM, et al. Exploration of potential breath biomarkers of chronic kidney disease through thermal desorption gas chromatography mass spectrometry[J]. Metabolites, 2023, 13(7): 837. DOI: 10.3390/metabo13070837.

[63] Westphal K, Dudzik D, Waszczuk-Jankowska M, et al. Common strategies and factors affecting off-line breath sampling and volatile organic compounds analysis using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS)[J]. Metabolites, 2022, 13(1): 8. DOI: 10.3390/metabo13010008.

[64] Gherghel S, Morgan RM, Arrebola-Liébanas J, et al. Development of a HS-SPME/GC–MS method for the analysis of volatile organic compounds from fabrics for forensic reconstruction applications[J]. Forensic Sci Int, 2018, 290: 207-218. DOI: 10.1016/j.forsciint.2018.07.015.

[65] Poli D, Goldoni M, Corradi M, et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2010, 878(27): 2643-2651. DOI: 10.1016/j.jchromb.2010.01.022.

[66] Pang X, Nan H, Zhong J, et al. Low-cost photoionization sensors as detectors in GC×GC systems designed for ambient VOC measurements[J]. Sci Total Environ, 2019, 664: 771-779. DOI: 10.1016/j.scitotenv.2019.01.348.

[67] Lourenço C, Bergin S, Hodgkinson J, et al. Instrumentation for quantitative analysis of volatile compounds emission at elevated temperatures. Part 1: Design and implementation[J]. Sci Rep, 2020, 10(1): 8700. DOI: 10.1038/s41598-020-65472-5.

[68] Manginell RP, Mowry CD, Pimentel AS, et al. Development of a mesoscale pulsed discharge helium ionization detector for portable gas chromatography[J]. Anal Sci, 2015, 31(11): 1183-1188. DOI: 10.2116/analsci.31.1183.

[69] Stierlin É, Michel T, Fernandez X. Field analyses of lavender volatile organic compounds: performance evaluation of a portable gas chromatography-mass spectrometry device[J]. Phytochem Anal, 2020, 31(6): 778-785. DOI: 10.1002/pca.2942.

[70] Xue C, Xu X, Liu Z, et al. Intelligent COVID-19 screening platform based on breath analysis[J]. J Breath Res, 2022, 17(1): 016005. DOI: 10.1088/1752-7163/aca119.

[71] Lam R, Lennard C, Kingsland G, et al. Rapid on-site identification of hazardous organic compounds at fire scenes using person-portable gas chromatography-mass spectrometry (GC-MS)-part 2: water sampling and analysis[J]. Forensic Sci Res, 2019, 5(2): 150-164. DOI: 10.1080/20961790.2019.1662648.

[72] Aksenov AA, Zamuruyev KO, Pasamontes A, et al. Analytical methodologies for broad metabolite coverage of exhaled breath condensate[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1061-1062: 17-25. DOI: 10.1016/j.jchromb.2017.06.038.

[73] Sani SN, Zhou W, Ismail BB, et al. LC-MS/MS based volatile organic compound biomarkers analysis for early detection of lung cancer[J]. Cancers (Basel), 2023, 15(4): 1186. DOI: 10.3390/cancers15041186.

[74] Hernández-Borges J, Rodríguez-Delgado MÁ, García-Montelongo FJ, et al. Highly sensitive analysis of multiple pesticides in foods combining solid-phase microextraction, capillary electrophoresis-mass spectrometry, and chemometrics[J]. Electrophoresis, 2004, 25(13): 2065-2076. DOI: 10.1002/elps.200405938.

[75] Kałużna-Czaplińska J. Current medical research with the application of coupled techniques with mass spectrometry[J]. Med Sci Monit, 2011, 17(5): RA117-RA123. DOI: 10.12659/msm.881756.

[76] Jiang Y, Huang D, Zhang H, et al. Smart miniature mass spectrometer enabled by machine learning[J]. Anal Chem, 2023, 95(14): 5976-5984. DOI: 10.1021/acs.analchem.2c05714.

[77] Lindinger W, Hansel A, Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research[J]. Int J Mass Spectrom, 1998, 173(3): 191-241. DOI: 10.1016/S0168-1176(97)00281-4.

[78] Jung YJ, Seo HS, Kim JH, et al. Advanced diagnostic technology of volatile organic compounds real time analysis analysis from exhaled breath of gastric cancer patients using proton-transfer-reaction time-of-flight mass spectrometry[J]. Front Oncol, 2021, 11: 560591. DOI: 10.3389/fonc.2021.560591.

[79] Roquencourt C, Salvator H, Bardin E, et al. Enhanced real-time mass spectrometry breath analysis for the diagnosis of COVID-19[J]. ERJ Open Res, 2023, 9(5): 00206-2023. DOI: 10.1183/23120541.00206-2023.

[80] Zou X, Wang H, Ge D, et al. On-line monitoring human breath acetone during exercise and diet by proton transfer reaction mass spectrometry[J]. Bioanalysis, 2019, 11(1): 33-40. DOI: 10.4155/bio-2018-0258.

[81] Jordan A, Haidacher S, Hanel G, et al. An online ultra-high sensitivity proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+SRI-MS)[J]. Int J Mass Spectrom, 2009, 286(1): 32-38. DOI: 10.1016/j.ijms.2009.06.006.

[82] Sulzer P, Edtbauer A, Hartungen E, et al. From conventional proton-transfer-reaction mass spectrometry (PTR-MS) to universal trace gas analysis[J]. Int J Mass Spectrom, 2012, 321: 66-70. DOI: 10.1016/j.ijms.2012.05.003.

[83] Kari E, Miettinen P, Yli-Pirilä P, et al. PTR-ToF-MS product ion distributions and humidity-dependence of biogenic volatile organic compounds[J]. Int J Mass Spectrom, 2018, 430: 87-97. DOI: 10.1016/j.ijms.2018.05.003.

[84] Mochalski P, King J, Mayhew CA, et al. A review on isoprene in human breath[J]. J Breath Res, 2023, 17(3): 037101. DOI: 10.1088/1752-7163/acc964.

[85] Pham YL, Holz O, Beauchamp J. Emissions and uptake of volatiles by sampling components in breath analysis[J]. J Breath Res, 2023, 17(3): 037102. DOI: 10.1088/1752-7163/acce34.

[86] Yuan B, Koss AR, Warneke C, et al. Proton-transfer-reaction mass spectrometry: applications in atmospheric sciences[J]. Chem Rev, 2017, 117(21): 13187-13229. DOI: 10.1021/acs.chemrev.7b00325.

[87] Roslund K, Uosukainen M, Järvik K, et al. Antibiotic treatment and supplemental hemin availability affect the volatile organic compounds produced by P. gingivalis in vitro[J]. Sci Rep, 2022, 12(1): 22534. DOI: 10.1038/s41598-022-26497-0.

[88] Liangou A, Tasoglou A, Huber HJ, et al. A method for the identification of COVID-19 biomarkers in human breath using proton transfer reaction time-of-flight mass spectrometry[J]. EClinicalMedicine, 2021, 42: 101207. DOI: 10.1016/j.eclinm.2021.101207.

[89] Acierno V, Fasciani G, Kiani S, et al. PTR-QiToF-MS and HSI for the characterization of fermented cocoa beans from different origins[J]. Food Chem, 2019, 289: 591-602. DOI: 10.1016/j.foodchem.2019.03.095.

[90] Ekpa O, Fogliano V, Linnemann A. Identification of the volatile profiles of 22 traditional and newly bred maize varieties and their porridges by PTR-QiTOF-MS and HS-SPME GC-MS[J]. J Sci Food Agric, 2021, 101(4): 1618-1628. DOI: 10.1002/jsfa.10781.

[91] Acierno V, Liu N, Alewijn M, et al. Which cocoa bean traits persist when eating chocolate? Real-time nosespace analysis by PTR-QiToF-MS[J]. Talanta, 2019, 195: 676-682. DOI: 10.1016/j.talanta.2018.11.100.

[92] Adams NG, Smith D. The selected ion flow tube (SIFT); a technique for studying ion-neutral reactions[J]. Int J Mass Spectrom Ion Phys, 1976, 21(3-4): 349-359. DOI: 10.1016/0020-7381(76)80133-7.

[93] Smith D, Španěl P, Demarais N, et al. Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS)[J]. Mass Spectrom Rev, 2023: e21835. DOI: 10.1002/mas.21835.

[94] Nakayama Y, Hanada M, Koda H, et al. Breast cancer detection using volatile compound profiles in exhaled breath via selected ion-flow tube mass spectrometry[J]. J Breath Res, 2022, 17(1): 016006. DOI: 10.1088/1752-7163/aca696.

[95] Segers K, Slosse A, Viaene J, et al. Feasibility study on exhaled-breath analysis by untargeted selected-ion flow-tube mass spectrometry in children with cystic fibrosis, asthma, and healthy controls: comparison of data pretreatment and classification techniques[J]. Talanta, 2021, 225: 122080. DOI: 10.1016/j.talanta.2021.122080.

[96] Tang WHW, Tranchito L, Albert C, et al. Exhaled breath analysis using selected ion flow tube mass spectrometry and disease severity in heart failure[J]. Metabolites, 2023, 13(10): 1049. DOI: 10.3390/metabo13101049.

[97] Spanĕl P, Smith D. On-line measurement of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry[J]. Rapid Commun Mass Spectrom, 2001, 15(8): 563-569. DOI: 10.1002/rcm.265.

[98] Smith D, Španěl P. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas[J]. Bioanalysis, 2016, 8(11): 1183-1201. DOI: 10.4155/bio-2016-0038.

[99] Spesyvyi A, Smith D, Španěl P. Selected ion flow-drift tube mass spectrometry: quantification of volatile compounds in air and breath[J]. Anal Chem, 2015, 87(24): 12151-12160. DOI: 10.1021/acs.analchem.5b02994.

[100] Allpress C, Crittenden D, Ma J, et al. Real-time differentiation of ethylbenzene and the xylenes using selected ion flow tube mass spectrometry[J]. Rapid Commun Mass Spectrom, 2019, 33(23): 1844-1849. DOI: 10.1002/rcm.8550.

[101] Lin GP, Vadhwana B, Belluomo I, et al. Cross platform analysis of volatile organic compounds using selected ion flow tube and proton-transfer-reaction mass spectrometry[J]. J Am Soc Mass Spectrom, 2021, 32(5): 1215-1223. DOI: 10.1021/jasms.1c00027.

[102] Rioseras AT, Gaugg MT, Sinues PML. Secondary electrospray ionization proceeds via gas-phase chemical ionization[J]. Anal Methods, 2017, 9(34): 5052-5057. DOI: 10.1039/c7ay01121k.

[103] Casas-Ferreira AM, Nogal-Sánchez MD, Pérez-Pavón JL, et al. Non-separative mass spectrometry methods for non-invasive medical diagnostics based on volatile organic compounds: a review[J]. Anal Chim Acta, 2019, 1045: 10-22. DOI: 10.1016/j.aca.2018.07.005.

[104] Li X, Huang DD, Du R, et al. Real-time breath analysis by using secondary nanoelectrospray ionization coupled to high resolution mass spectrometry[J]. J Vis Exp, 2018,  2018(133): e56465. DOI: 10.3791/56465.

[105] Gaugg MT. On-line breath metabolomics in respiratory diseases using secondary electrospray ionization-mass spectrometry[J]. Chimia (Aarau), 2018, 72(4): 184-188. DOI: 10.2533/chimia.2018.184.

[106] Nowak N, Engler A, Thiel S, et al. Validation of breath biomarkers for obstructive sleep apnea[J]. Sleep Med, 2021, 85: 75-86. DOI: 10.1016/j.sleep.2021.06.040.

[107] Weber R, Streckenbach B, Welti L, et al. Online breath analysis with SESI/HRMS for metabolic signatures in children with allergic asthma[J]. Front Mol Biosci, 2023, 10: 1154536. DOI: 10.3389/fmolb.2023.1154536.

[108] Gómez-Mejia A, Arnold K, Bär J, et al. Rapid detection of staphylococcus aureus and streptococcus pneumoniae by real-time analysis of volatile metabolites[J]. iScience, 2022, 25(10): 105080. DOI: 10.1016/j.isci.2022.105080.

[109] Weber R, Haas N, Baghdasaryan A, et al. Volatile organic compound breath signatures of children with cystic fibrosis by real-time SESI-HRMS[J]. ERJ Open Res, 2020, 6(1): 00171-2019. DOI: 10.1183/23120541.00171-2019.

[110] Gisler A, Lan J, Singh KD, et al. Real-time breath analysis of exhaled compounds upon peppermint oil ingestion by secondary electrospray ionization-high resolution mass spectrometry: technical aspects[J]. J Breath Res, 2020, 14(4): 046001. DOI: 10.1088/1752-7163/ab9f8b.

[111] Wang R, Gröhn AJ, Zhu L, et al. On the mechanism of extractive electrospray ionization (EESI) in the dual-spray configuration[J]. Anal Bioanal Chem, 2012, 402(8): 2633-2643. DOI: 10.1007/s00216-011-5471-8.

[112] Ke M, Zhang H, Ding J, et al. Generating supercharged protein ions for breath analysis by extractive electrospray ionization mass spectrometry[J]. Anal Chem, 2019, 91(5): 3215-3220. DOI: 10.1021/acs.analchem.8b03114.

[113] Zuo W, Bai W, Gan X, et al. Detection of lung cancer by analysis of exhaled gas utilizing extractive electrospray ionization-mass spectroscopy[J]. J Biomed Nanotechnol, 2019, 15(4): 633-646. DOI: 10.1166/jbn.2019.2719.

[114] Zeng Q, Li P, Cai Y, et al. Detection of creatinine in exhaled breath of humans with chronic kidney disease by extractive electrospray ionization mass spectrometry[J]. J Breath Res, 2016, 10(1): 016008. DOI: 10.1088/1752-7155/10/1/016008.

[115] Chan GC, Shelley JT, Wiley JS, et al. Elucidation of reaction mechanisms responsible for afterglow and reagent-ion formation in the low-temperature plasma probe ambient ionization source[J]. Anal Chem, 2011, 83(10): 3675-3686. DOI: 10.1021/ac103224x.

[116] Olenici-Craciunescu SB, Michels A, Meyer C, et al. Characterization of a capillary dielectric barrier plasma jet for use as a soft ionization source by optical emission and ion mobility spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectrocopy, 2009, 64(11-12): 1253-1258. DOI: 10.1016/j.sab.2009.10.001.

[117] Smoluch M, Mielczarek P, Silberring J. Plasma-based ambient ionization mass spectrometry in bioanalytical sciences[J]. Mass Spectrom Rev, 2016, 35(1): 22-34. DOI: 10.1002/mas.21460.

[118] Geng X, Zhang K, Li H, et al. Online mass spectrometry of exhaled breath with a modified ambient ion source[J]. Talanta, 2023, 255: 124254. DOI: 10.1016/j.talanta.2023.124254.

[119] Xu L, Zhang K, Geng X, et al. High-resolution mass spectrometry exhalome profiling with a modified direct analysis in real time ion source[J]. Rapid Commun Mass Spectrom, 2022, 36(24): e9406. DOI: 10.1002/rcm.9406.

[120] Li Y. Applications of a confined DART (direct analysis in real time) ion source for online in vivo analysis of human breath[J]. Anal Methods, 2013, 5(24): 6933-6940. DOI: 10.1039/c3ay41406j.

[121] Fandino J, Orejas J, Chauvet L, et al. Evaluation of a modified halo flowing atmospheric pressure afterglow ion source for the analysis of directly injected volatile organic compounds[J]. J Anal Atom Spectrom, 2020, 35(9): 2002-2010. DOI: 10.1039/d0ja00140f.

[122] Atutov SN, Galeyev AE, Plekhanov AI, et al. Universal sensor based on the spectroscopy of glow discharge for the detection of traces of atoms or molecules in air[J]. Rev Sci Instrum, 2018, 89(3): 033105. DOI: 10.1063/1.4989904.

[123] Zhang D, Latif M, Gamez G. Instantaneous differentiation of functional isomers via reactive flowing atmospheric pressure afterglow mass spectrometry[J]. Anal Chem, 2021, 93(29): 9986-9994. DOI: 10.1021/acs.analchem.0c04867.

[124] Gong X, Shi S, Zhang D, et al. Quantitative analysis of exhaled breath collected on filter substrates via low-temperature plasma desorption/ionization mass spectrometry[J]. J Am Soc Mass Spectrom, 2022, 33(8): 1518-1529. DOI: 10.1021/jasms.2c00109.

[125] Yang T, Gao DX, Yu YL, et al. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath[J]. Talanta, 2016, 146: 603-608. DOI: 10.1016/j.talanta.2015.07.074.

[126] Gong X, Shi S, Gamez G. Real-time quantitative analysis of valproic acid in exhaled breath by low temperature plasma ionization mass spectrometry[J]. J Am Soc Mass Spectrom, 2017, 28(4): 678-687. DOI: 10.1007/s13361-016-1533-7.

[127] Liu Y, Li Q, Su G, et al. Photochemical conversion of toluene in simulated atmospheric matrix and characterization of large molecular weight products by  +APPI FT-ICR MS[J]. Sci Total Environ, 2019, 649: 111-119. DOI: 10.1016/j.scitotenv.2018.08.293.

[128] Kauppila TJ, Syage JA, Benter T. Recent developments in atmospheric pressure photoionization-mass spectrometry[J]. Mass Spectrom Rev, 2017, 36(3): 423-449. DOI: 10.1002/mas.21477.

[129] Appel MF, Short LC, Benter T. Development of medium pressure laser ionization, MPLI. Description of the MPLI ion source[J]. J Am Soc Mass Spectrom, 2004, 15(12): 1885-1896. DOI: 10.1016/j.jasms.2004.09.010.

[130] Chen C, Jiang D, Li H. UV photoionization ion mobility spectrometry: fundamentals and applications[J]. Anal Chim Acta, 2019, 1077: 1-13. DOI: 10.1016/j.aca.2019.05.018.

[131] Henderson B, Khodabakhsh A, Metsälä M, et al. Laser spectroscopy for breath analysis: towards clinical implementation[J]. Appl Phys B, 2018, 124(8): 161. DOI: 10.1007/s00340-018-7030-x.

[132] Seichter F, Tütüncü E, Hagemann LT, et al. Online monitoring of carbon dioxide and oxygen in exhaled mouse breath via substrate-integrated hollow waveguide Fourier-transform infrared-luminescence spectroscopy[J]. J Breath Res, 2018, 12(3): 036018. DOI: 10.1088/1752-7163/aabf98.

[133] Shlomo IB, Frankenthal H, Laor A, et al. Detection of SARS-CoV-2 infection by exhaled breath spectral analysis: introducing a ready-to-use point-of-care mass screening method[J]. EClinicalMedicine, 2022, 45: 101308. DOI: 10.1016/j.eclinm.2022.101308.

[134] Glöckler J, Mizaikoff B, Díaz de León-Martínez L. SARS CoV-2 infection screening via the exhaled breath fingerprint obtained by FTIR spectroscopic gas-phase analysis. a proof of concept[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2023, 302: 123066. DOI: 10.1016/j.saa.2023.123066.

[135] Kalidoss R, Umapathy S, Anandan R, et al. Comparative study on the preparation and gas sensing properties of reduced graphene oxide/SnO2 binary nanocomposite for detection of acetone in exhaled breath[J]. Anal Chem, 2019, 91(8): 5116-5124. DOI: 10.1021/acs.analchem.8b05670.

[136] Seichter F, Vogt JA, Wachter U, et al. Strategies for 13C enrichment calculation in Fourier-transform infrared CO2 spectra containing spectral overlapping and nonlinear abundance-amount relations utilizing response surface fits[J]. Anal Chim Acta, 2020, 1095: 48-60. DOI: 10.1016/j.aca.2019.10.038.

[137] Hagemann LT, Repp S, Mizaikoff B. Hybrid analytical platform based on field-asymmetric ion mobility spectrometry, infrared sensing, and luminescence-based oxygen sensing for exhaled breath analysis[J]. Sensors(Basel), 2019, 19(12): 2653. DOI: 10.3390/s19122653.

[138] Roller C, Namjou K, Jeffers JD, et al. Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation[J]. Appl Opt, 2002, 41(28): 6018-6029. DOI: 10.1364/ao.41.006018.

[139] Ghorbani R, Blomberg A, Schmidt FM. Impact of breath sampling on exhaled carbon monoxide[J]. J Breath Res, 2020, 14(4): 047105. DOI: 10.1088/1752-7163/abb479.

[140] Maithani S, Mandal S, Maity A, et al. High-resolution spectral analysis of ammonia near 6.2 μm using a cw EC-QCL coupled with cavity ring-down spectroscopy[J]. Analyst, 2018, 143(9): 2109-2114. DOI: 10.1039/c7an02008b.

[141] Larracy R, Phinyomark A, Scheme E. Infrared cavity ring-down spectroscopy for detecting non-small cell lung cancer in exhaled breath[J]. J Breath Res, 2022, 16(2): 026008. DOI: 10.1088/1752-7163/ac5e4f.

[142] Wang H, Wei X, Wu Y, et al. A combined screening study for evaluating the potential of exhaled acetone, isoprene, and nitric oxide as biomarkers of lung cancer[J]. RSC Adv, 2023, 13(45): 31835-31843. DOI: 10.1039/d3ra04522f.

[143] 刘静莎, 张健鹏. 细菌性肺炎患者呼出气与细菌培养顶空气体光声光谱的对比分析[J]. 当代医药论丛, 2023, 21(10): 12-16. [Liu JS, Zhang JP. Comparative analysis of photoacoustic spectra of exhaled air in patients with bacterial pneumonia and cultured aerosols[J]. Contemporary Medicine Forum, 2023, 21(10): 12-16.] DOI: 10.3969/j.issn.2095-7629.2023.10.004.

[144] Kibion. Kibion Dynamic [EB/OL]. (2017-06-14) [2024-01-05]. https://kibion.com/product-range/kibion-dynamic/.

[145] Bedfont Scientific Ltd. GastroCH4ECK [EB/OL]. (2019-07-26) [2024-01-05]. https://www.gastrolyzer.com/gastroch4eck/.

[146] Jiang C, Sun M, Wang Z, et al. A portable real-time ringdown breath acetone analyzer: toward potential diabetic screening and management[J]. Sensors (Basel), 2016, 16(8): 1199. DOI: 10.3390/s16081199.

[147] Chen H, Huo D, Zhang J. Gas recognition in E-nose system: a review[J]. IEEE Trans Biomed Circuits Syst, 2022, 16(2): 169-184. DOI: 10.1109/TBCAS.2022.3166530.

[148] Savito L, Scarlata S, Bikov A, et al. Exhaled volatile organic compounds for diagnosis and monitoring of asthma[J]. World J Clin Cases, 2023, 11(21): 4996-5013. DOI: 10.12998/wjcc.v11.i21.4996.

[149] Dospinescu VM, Tiele A, Covington JA. Sniffing out urinary tract infection-diagnosis based on volatile organic compounds and smell profile[J]. Biosensors (Basel), 2020, 10(8): 83. DOI: 10.3390/bios10080083.

[150] Lai SY, Deffenderfer OF, Hanson W, et al. Identification of upper respiratory bacterial pathogens with the electronic nose[J]. Laryngoscope, 2002, 112(6): 975-979. DOI: 10.1097/00005537-200206000-00007.

[151] Pavlou AK, Magan N, Sharp D, et al. An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro[J]. Biosens Bioelectron, 2000, 15(7-8): 333-342. DOI: 10.1016/S0956-5663(99)00035-4.

[152] Rocco G, Pennazza G, Santonico M, et al. Breathprinting and early diagnosis of lung cancer[J]. J Thorac Oncol, 2018, 13(7): 883-894. DOI: 10.1016/j.jtho.2018.02.026.

[153] Dalis C, Mesfin FM, Manohar K, et al. Volatile organic compound assessment as a screening tool for early detection of gastrointestinal diseases[J]. Microorganisms, 2023, 11(7): 1822. DOI: 10.3390/microorganisms11071822.

[154] Zhang T, Tan R, Shen W, et al. Inkjet-printed ZnO-based MEMS sensor array combined with feature selection algorithm for VOCs gas analysis[J]. Sens Actuators B Chem, 2023, 382: 133555. DOI: 10.1016/j.snb.2023.133555.

[155] Gupta A, Singh TS, Yadava RDS. MEMS sensor array-based electronic nose for breath analysis-a simulation study[J]. J Breath Res, 2018, 13(1): 016003. DOI: 10.1088/1752-7163/aad5f1.

[156] Poli D, Carbognani P, Corradi M, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study[J]. Respir Res, 2005, 6(1): 71. DOI: 10.1186/1465-9921-6-71.

[157] Machado RF, Laskowski D, Deffenderfer O, et al. Detection of lung cancer by sensor array analyses of exhaled breath[J]. Am J Resp Crit Care Med, 2005, 171(11): 1286-1291. DOI: 10.1164/rccm.200409-1184OC.

[158] Mazzone PJ, Wang XF, Xu Y, et al. Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer[J]. J Thorac Oncol, 2012, 7(1): 137-142. DOI: 10.1097/JTO.0b013e318233d80f.

[159] Coronel Teixeira R, Rodríguez M, Jiménez de Romero N, et al. The potential of a portable, point-of-care electronic nose to diagnose tuberculosis[J]. J Infect, 2017, 75(5): 441-447. DOI: 10.1016/j.jinf.2017.08.003.

[160] Felton TW, Ahmed W, White IR, et al. Analysis of exhaled breath to identify critically ill patients with ventilator-associated pneumonia[J]. Anaesthesia, 2023, 78(6): 712-721. DOI: 10.1111/anae.15999.

[161] Suarez-Cuartin G, Giner J, Merino JL, et al. Identification of Pseudomonas aeruginosa and airway bacterial colonization by an electronic nose in bronchiectasis[J]. Respir Med, 2018, 136: 111-117. DOI: 10.1016/j.rmed.2018.02.008.

[162] van de Kant KD, van Berkel JJ, Jöbsis Q, et al. Exhaled breath profiling in diagnosing wheezy preschool children[J]. Eur Respir J, 2013, 41(1): 183-188. DOI: 10.1183/09031936.00122411.

[163] Zhang P, Ren T, Chen H, et al. A feasibility study of Covid-19 detection using breath analysis by high-pressure photon ionization time-of-flight mass spectrometry[J]. J Breath Res, 2022, 16(4): 046009. DOI: 10.1088/1752-7163/ac8ea1.

[164] Dragonieri S, van der Schee MP, Massaro T, et al. An electronic nose distinguishes exhaled breath of patients with malignant pleural mesothelioma from controls[J]. Lung cancer, 2012, 75(3): 326-331. DOI: 10.1016/j.lungcan.2011.08.009.

[165] Biller H, Holz O, Windt H, et al. Breath profiles by electronic nose correlate with systemic markers but not ozone response[J]. Respir Med, 2011, 105(9): 1352-1363. DOI: 10.1016/j.rmed.2011.03.002.

[166] Kumar S, Huang J, Abbassi-Ghadi N, et al. Mass spectrometric analysis of exhaled breath for the identification of volatile organic compound biomarkers in esophageal and gastric adenocarcinoma[J]. Ann Surg, 2015, 262(6): 981-990. DOI: 10.1097/SLA.0000000000001101.

[167] Dadamio J, Van den Velde S, Laleman W, et al. Breath biomarkers of liver cirrhosis[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2012, 905: 17-22. DOI: 10.1016/j.jchromb.2012.07.025.

[168] Peters AL, Gerritsen MG, Brinkman P, et al. Volatile organic compounds in exhaled breath are independent of systemic inflammatory syndrome caused by intravenous lipopolysaccharide infusion in humans: results from an experiment in healthy volunteers[J]. J Breath Res, 2017, 11(2): 026003. DOI: 10.1088/1752-7163/aa6545.

[169] van de Velde ME, El Hassani SEM, Kaspers GJL, et al. Prediction of bloodstream infection in pediatric acute leukemia by microbiota and volatile organic compounds analysis[J]. J Pediatr Hematol Oncol, 2022, 44(1): e152-e159. DOI: 10.1097/MPH.0000000000002210.

[170] Berna AZ, McCarthy JS, Wang XR, et al. Diurnal variation in expired breath volatiles in malaria-infected and healthy volunteers[J]. J Breath Res, 2018, 12(4): 046014. DOI: 10.1088/1752-7163/aadbbb.

[171] Broza YY, Har-Shai L, Jeries R, et al. Exhaled breath markers for nonimaging and noninvasive measures for detection of multiple sclerosis[J]. ACS Chem Neurosci, 2017, 8(11): 2402-2413. DOI: 10.1021/acschemneuro.7b00181.

[172] Nakhleh MK, Badarny S, Winer R, et al. Distinguishing idiopathic Parkinson's disease from other parkinsonian syndromes by breath test[J]. Parkinsonism Relat Disord, 2015, 21(2): 150-153. DOI: 10.1016/j.parkreldis. 2014.11.023.

[173] Mochalski P, King J, Haas M, et al. Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease[J]. BMC Nephrol, 2014, 15: 43. DOI: 10.1186/1471-2369-15-43.

[174] Zou X, Zhou W, Shen C, et al. Online exhaled gas measurements for radiotherapy patients by proton transfer reaction mass spectrometry[J]. J Environ Radioact, 2016, 160: 135-140. DOI: 10.1016/j.jenvrad.2016.04.029.

Popular papers
Last 6 months