Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 38,2025 No.4 Detail

Identification of mitochondrial feature genes for type 2 diabetes mellitus based on bioinformatics and machine learning

Published on Apr. 28, 2025Total Views: 16 times Total Downloads: 3 times Download Mobile

Author: REN Jing 1 LI Yuting 1 LIU Xiaoqin 2 MENG Xianglong 1

Affiliation: 1. College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi Province, China 2. College of Pharmacy, Shandong Xiandai University, Jinan 250104, China

Keywords: Type 2 diabetes mellitus Mitochondrial gene Bioinformatics Machine learning

DOI: 10.12173/j.issn.1004-4337.202411053

Reference: Ren J, Li YT, Liu XQ, Meng XL. Identification of mitochondrial feature genes for type 2 diabetes mellitus based on bioinformatics and machine learning[J]. Journal of Mathematical Medicine, 2025, 38(4): 237-247. DOI: 10.12173/j.issn.1004-4337.202411053[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To screen mitochondrial function-related feature genes in the skeletal muscle of type 2 diabetes mellitus (T2DM) patients and construct a diagnostic model based on bioinformatics and machine learning techniques, in order to provide new insights for the clinical diagnosis of T2DM.

Methods  T2DM datasets from the Gene Expression Omnibus (GEO) database were integrated and processed using R 4.3.2 software for data normalization and batch effect correction. Differentially expressed genes were screened and intersected with mitochondrial genes from the MitoCarta 3.0 database. Key genes were identified through a combination of three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) regression, random forest (RF), and support vector machine (SVM). The reliability of feature genes was evaluated using Gaussian mixture models (GMM), and a logistic regression diagnostic model was constructed. The model performance was assessed using the receiver operating characteristic curve (ROC) and externally validated in independent datasets.

Results  A total of 23 T2DM-related mitochondrial differential genes were obtained. MRPS10, SLC25A5, and TRNT1 were identified by machine learning algorithm as the core feature genes, which were significantly enriched in oxidative phosphorylation and fatty acid metabolism pathways. The diagnostic model achieved an area under curve (AUC) of 0.958 in the training set, with excellent performance in validation sets GSE29221 (AUC=1.000) and GSE25724 (AUC=0.847).

Conclusion  The mitochondrial function genes MRPS10, SLC25A5, and TRNT1 identified in this study demonstrated potential as diagnostic biomarkers for T2DM. These findings not only provide new candidate biomarkers for diagnosing T2DM, but also lay a foundation for in-depth analysis of the molecular mechanisms of mitochondrial dysfunction in the pathogenesis of T2DM.

Full-text
Please download the PDF version to read the full text: download
References

1.Luo JQ, Shu Y, Zhang W. Editorial: pharmacogenomics and pharmacomicrobiomics in type 2 diabetes mellitus (T2DM)[J]. Front Endocrinol (Lausanne), 2023, 14: 1287807. DOI: 10.3389/fendo.2023.1287807.

2.王富军, 王文琦. 《中国2型糖尿病防治指南(2020年版)》解读[J]. 河北医科大学学报, 2021, 24(12): 1365-1371. [Wang FJ, Wang WQ. Interpretation of the "China guidelines for the prevention and treatment of type 2 diabetes (2020 edition)"[J]. Journal of Hebei Medical University, 2021, 24(12): 1365-1371.] DOI: 10.3969/j.issn.1007-3205.2022.12.001.  

3.Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843. DOI: 10.1016/j.diabres.2019.107843.

4.Wang L, Peng W, Zhao Z, et al. Prevalence and treatment of diabetes in China, 2013-2018[J]. JAMA, 2021, 326(24): 2498-2506. DOI: 10.1001/jama.2021.22208.

5.Dascalu AM, Serban D, Tanasescu D, et al. The value of white cell inflammatory biomarkers as potential predictors for diabetic retinopathy in type 2 diabetes mellitus (T2DM)[J]. Biomedicines, 2023, 11(8): 2106. DOI: 10.3390/biomedicines11082106.

6.Cui K, Li Z. Identification and analysis of type 2 diabetes-mellitus-associated autophagy-related genes[J]. Front Endocrinol (Lausanne), 2023, 14: 1164112. DOI: 10.3389/fendo.2023.1164112.

7.Ma L, Li Y. Cognitive function and insulin resistance in elderly patients with type 2 diabetes[J]. Neurol Res, 2017, 39(3): 259-263. DOI: 10.1080/01616412.2017.1281199.

8.官伟康, 吕静, 杨朝鲜. 线粒体质量控制新途径: 线粒体衍生囊泡[J]. 解剖学报, 2021, 52(1): 152-156. [Guan WK, Lyu J, Yang CX. A new pathway of mitochondrial quality control: mitochondrial-derived vesicles[J]. Acta Anatomica Sinica, 2021, 52(1): 152-156.] DOI: 10.16098/j.issn.0529-1356.2021.01.025.

9.杨迎, 夏维, 庞志宇, 等. 2型糖尿病患者线粒体呼吸链复合体Ⅰ活性的临床观察[J]. 中国糖尿病杂志, 2016, 24(8): 721-725. [Yang Y, Xia W, Pang ZY, et al. Observational study of mitochondrial complex Ⅰ kinetic activity in type 2 diabetes[J]. Chinese Journal of Diabetes, 2016, 24(8): 721-725.] DOI: 10.3969/j.issn.1006-6187.2016.08.013.

10.张鼎, 赵亚双. 生物信息学在分子流行病学中的应用[J]. 中华疾病控制杂志, 2021, 25(1): 20-24. [Zhang D, Zhao YS. Applications of bioinformatics in molecular epidemiology[J]. Chinese Journal of Disease Control and Prevention, 2021, 25(1): 20-24.] DOI: 10.16462/j.cnki.zhjbkz.2021.01.005.

11.Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function[J]. Nucleic Acids Res, 2010, 38(Web Server issue): W214-W220. DOI: 10.1093/nar/gkq537.

12.Rath S, Sharma R, Gupta R, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations[J]. Nucleic Acids Res, 2021, 49(D1): D1541-D1547. DOI: 10.1093/nar/gkaa1011.

13.Xu K, Feng X, Xu Z, et al. Association of sarcopenia with osteoporosis in Chinese patients with type 2 diabetes[J]. BMC Musculoskelet Disord, 2024, 25(1): 226. DOI: 10.1186/s12891-024-07323-2.

14.Dlamini M, Khathi A. Prediabetes-associated changes in skeletal muscle function and their possible links with diabetes: a literature review[J]. Int J Mol Sci, 2023, 25(1): 469. DOI: 10.3390/ijms25010469.

15.Zhu S, Tian Z, Torigoe D, et al. Aging- and obesity-related peri-muscular adipose tissue accelerates muscle atrophy[J]. PLoS One, 2019, 14(8): e0221366. DOI: 10.1371/journal.pone.0221366.

16.Arab Sadeghabadi Z, Abbasalipourkabir R, Mohseni R, et al. Investigation of oxidative stress markers and antioxidant enzymes activity in newly diagnosed type 2 diabetes patients and healthy subjects, association with IL-6 level[J]. J Diabetes Metab Disord, 2019, 18(2): 437-443. DOI: 10.1007/s40200-019-00437-8.

17.Yamamoto M, Sugimoto T. Advanced glycation end products, diabetes, and bone strength[J]. Curr Osteoporos Rep, 2016, 14(6): 320-326. DOI: 10.1007/s11914-016-0332-1.

18.Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy[J]. Diabetes Metab Res Rev, 2012, 28 Suppl 1: 8-14. DOI: 10.1002/dmrr.2239.

19.Fung FY, Koh YLE, Malhotra R, et al. Prevalence of and factors associated with sarcopenia among multi-ethnic ambulatory older Asians with type 2 diabetes mellitus in a primary care setting[J]. BMC Geriatrics, 2019, 19(1): 122. DOI: 10.1186/s12877-019-1137-8.

20.Fiorentino TV, Monroy A, Kamath S, et al. Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes[J]. Metabolism, 2021, 114: 154416. DOI: 10.1016/j.metabol.2020.154416.

21.Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance[J]. Cell Metab, 2008, 7(1): 45-56. DOI: 10.1016/j.cmet.2007.10.013.

22.Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes[J]. N Engl J Med, 2004, 350(7): 664-671. DOI: 10.1056/NEJMoa031314.

23.Sriwijitkamol A, Christ-Roberts C, Berria R, et al. Reduced skeletal muscle inhibitor of kappaB content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training[J]. Diabetes, 2006, 55(3): 760-767. DOI: 10.2337/diabetes.55.03.06.db05-0677.

24.Tantiwong P, Shanmugasundaram K, Monroy A, et al. NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions[J]. Am J Physiol Endocrinol Metab, 2010, 299(5): E794-E801. DOI: 10.1152/ajpendo.00776.2009.

25.Reyna SM, Ghosh S, Tantiwong P, et al. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects[J]. Diabetes, 2008, 57(10): 2595-2602. DOI: 10.2337/db08-0038.

26.Kang J, Heart E, Sung CK. Effects of cellular ATP depletion on glucose transport and insulin signaling in 3T3-L1 adipocytes[J]. Am J Physiol Endocrinol Metab, 2001, 280(3): E428-E435. DOI: 10.1152/ajpendo.2001.280.3.E428.

27.Wei Y, Chen K, Whaley-Connell AT, et al. Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species[J]. Am J Physiol Regul Integr Comp Physiol, 2008, 294(3): R673-R680. DOI: 10.1152/ajpregu.00561.2007.

28.Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature, 2000, 404(6779): 787-790. DOI: 10.1038/35008121.

29.Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review[J]. Mol Cell Biochem, 2023, 478(6): 1307-1324. DOI: 10.1007/s11010-022-04587-x.

30.Bonnard C, Durand A, Peyrol S, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice[J]. J Clin Invest, 2008, 118(2): 789-800. DOI: 10.1172/JCI32601.

31.Le J, Chen Y, Yang W, et al. Metabolic basis of solute carrier transporters in treatment of type 2 diabetes mellitus[J]. Acta Pharm Sin B, 2024, 14(2): 437-454. DOI: 10.1016/j.apsb.2023.09.004.

32.Garros RF, Paul R, Connolly M, et al. MicroRNA-542 promotes mitochondrial dysfunction and SMAD activity and is elevated in intensive care unit–acquired weakness[J]. Am J Respir Crit Care Med, 2017, 196(11): 1422-1433. DOI: 10.1164/rccm.201701-0101OC.

33.Slade A, Kattini R, Campbell C, et al. Diseases associated with defects in tRNA CCA addition[J]. Int J Mol Sci, 2020, 21(11): 3780. DOI: 10.3390/ijms21113780.

34.Fatica T, Naas T, Liwak U, et al. TRNT-1 deficiency is associated with loss of tRNA integrity and imbalance of distinct proteins[J]. Genes (Basel), 2023, 14(5): 1043. DOI: 10.3390/genes14051043.

35.Gao C, Zhang C, Wen L, et al. Regulation of reactive oxygen species and the role of mitochondrial apoptotic-related genes in rheumatoid arthritis[J]. Sci Rep, 2025, 15(1): 2165. DOI: 10.1038/s41598-025-85460-x.

36.Zhu S, Wang W, Zhang J, et al. Slc25a5 regulates adipogenesis by modulating ERK signaling in OP9 cells[J]. Cell Mol Biol Lett, 2022, 27(1): 11. DOI: 10.1186/s11658-022-00314-y.

Popular papers
Last 6 months