Objective To explore the active components, core targets, key pathways, and molecular mechanisms of four types of insect tea in regulating diabetes based on network pharmacology and molecular docking.
Methods The active components of four types of insect tea (Huaxiang insect tea, trilobite insect tea, eagle tea, and Kuding insect tea) were searched through relevant literature. The SwissADME platform was used to screen these active components, and the SwissTargetPrediction database was utilized to predict the targets of the active compounds in insect tea. A component-disease target Venn diagram was constructed, and the insect tea-active component-target-disease network diagram was constructed using Cytoscape 3.10.2 software. The STRING 12.0 database was used to generate a protein-protein interaction (PPI) network diagram, while the DAVID database and the Microbioinformatics platform were employed to draw enrichment analysis charts and pathway diagrams. Finally, molecular docking results were visualized using PyMol software.
Results A total of 32 active ingredients and 576 corresponding targets were identified in four types of insect tea. There were 2 110 diabetes disease targets, with 168 intersecting targets. The mechanism of insect tea may be related to multiple core targets, such as AKT1, EGFR, and SRC. Gene Ontology (GO) enrichment analysis showed that insect tea regulated diabetes by involving biological processes, cellular components, and molecular functions such as negative regulation of gene expression, response to xenobiotic stimulus, positive regulation of transcription by RNA polymerase II, enzyme binding, and homotypic protein binding. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways suggested that insect tea mainly involved lipid metabolism, atherosclerosis, estrogen signaling pathways, and endocrine resistance. The results of molecular docking showed that the flavonoids luteolin and baicalein in insect tea formed relatively stable conformations with key targets EGFR and SRC.
Conculsion Insect tea can regulate diabetes by multi-target and multi-pathway mechanisms, which provides a theoretical basis for the development and utilization of insect tea.
1.李红艳, 戴思思, 吴威, 等. 中药治疗糖尿病作用机制研究进展[J]. 世界科学技术-中医药现代化, 2024, 26(6): 1410-1433. [Li HY, Dai SS, Wu W, et al. Research progress on mechanism of Chinese medicines in treating diabetes[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2024, 26(6): 1410-1433.] DOI: 10.11842/wst.20230628003.
2.许利嘉, 肖伟, 刘勇, 等. 茶文化中的奇葩—虫茶 [J]. 中国现代中药, 2013, 15(1): 76-79. [Xu LJ, Xiao W, Liu Y, et al. Insect-tea, a treasure of the Chinese Tea Culture[J]. Modern Chinese Medicine, 2013, 15(1): 76-79.] DOI: 10.3969/j.issn.1673-4890.2013.01.018.
3.袁冬寅, 张芬, 陈家献, 等. 不同虫茶及其植物原料的抗氧化作用效果比较[J]. 食品安全质量检测学报, 2024, 15(3): 310-319. [Yuan DY, Zhang F, Chen JX, et al. Comparison of antioxidant effects of different insect teas and their plant raw materials[J]. Journal of Food Safety & Quality, 2024, 15(3): 310-319.] DOI: 10.19812/j.cnki.jfsq11-5956/ts.2024.03.038.
4.薄采颖, 陈幸良, 周永红, 等. 虫茶营养成分分析及评价 [J]. 林产化学与工业, 2022, 42(5): 100-106. [Bo CY, Chen XL, Zhou YH, et al. Analysis and evaluation of nutritional components of insect tea[J]. Chemistry and Industry of Forest Products, 2022, 42(5): 100-106.] DOI: 10.3969/j.issn.0253-2417.2022.05.014.
5.诸凤丹, 文礼章, 朱亮, 等. 三叶虫茶及其产茶植物的降血糖作用研究[C]. 华中三省(湖南、湖北、河南)昆虫学会2010年学术年会论文集, 2010: 53-57. [Zhu FD, Wen LZ, Zhu L, et al. Studies on the hypoglycemic effects of San-ye insect tea and its tea-producing plants[C]. Proceedings of the 2010 Annual Conference of the Entomological Society of three provinces in China (Hunan, Hubei and Henan), 2010: 53-57.] https://www.cqvip.com/doc/conference/535018919
6.祁建宏, 董芳旭. 黄酮类化合物药理作用研究进展 [J]. 北京联合大学学报(自然科学版), 2020, 34(3): 89-92. [Qi JH, Dong FX. Research Progress of the Pharmacological Action of Flavonoids[J]. Journal of Beijing Union University (Natural Sciences), 2020, 34(3): 89-92.] DOI: 10.16255/j.cnki.ldxbz.2020. 03.014.
7.Wang KJ, Wu KF, Li N. Insect tea originated from ethnic minority regions in Southwest China: a review on the types, traditional uses, nutrients, chemistry and pharmacological activities[J]. J Ethnopharmacol, 2023, 309: 116340. DOI: 10.1016/j.jep.2023.116340.
8.Takayoshi J, Huang YL, Matsuo Y, et al. Ellagitannin digestion in moth larvae and a new dimeric ellagitannin from the leaves of Platycarya strobilacea[J]. Molecules, 2021, 26(14): 4134. DOI: 10.3390/molecules26144134.
9.刘平安, 许光明, 汤灿辉, 等. 三叶虫茶中化学成分含量的测定[J]. 中国药房, 2009, 20(9): 676-679. [Liu PA, Xu GM, Tang CH, et al. Determination of chemical constituents in Sanye Chongcha[J]. China Pharmacy, 2009, 20(9): 676-679.] https://www.cqvip.com/doc/journal/963070755
10.肖美凤, 赵碧清, 刘芳, 等. 三叶虫茶中白杨素苷提取工艺的优化[J]. 中南药学, 2014, 12(4): 321-324. [Xiao MF, Zhao BQ, Liu F, et al. Optimization of the extraction process of chrysin-7-glucoside from Sanyechong tea[J]. Central South Pharmacy, 2014, 12(4): 321-324.] https://www.cqvip.com/doc/journal/941791446
11.贺百花. 三叶虫茶茶多酚提取工艺研究[J]. 湖南生态科学学报, 2014, 1(4): 40-44. [He BH. Study on extraction techniques of trilobite tea polyphenols[J]. Journal of Hunan Ecological Science, 2014, 1(4): 40-44.] DOI: 10.3969/j.issn.1671-6361.2014.04.008.
12.Zhang JP, Hou JQ, Li MX, et al. A novel process for food waste recycling: a hydrophobic liquid mulching film preparation[J]. Environ Res, 2022, 212(Pt B): 113332. DOI: 10.1016/j.envres.2022.113332.
13.Mu J, Yang F, Tan F, et al. Determination of polyphenols in Ilex kudingcha and insect tea (leaves altered by animals) by ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-QqQ-MS) and comparison of their anti-aging effects[J]. Front Pharmacol, 2021, 11: 600219. DOI: 10.3389/fphar.2020.600219.
14.Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules[J]. Sci Rep, 2017, 7: 42717. DOI: 10.1038/srep42717.
15.Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33. DOI: 10.1002/cpbi.5.
16.Amberger JS, Bocchini CA, Schiettecatte F, et al. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders[J]. Nucleic Acids Res, 2015, 43(Database issue): D789-D798. DOI: 10.1093/nar/gku1205.
17.Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants[J]. Nucleic Acids Res, 2017, 45(D1): D833-D839. DOI: 10.1093/nar/gkw943.
18.Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(D1): D607-D613. DOI: 10.1093/nar/gky1131.
19.张丽雯, 阮梅花, 刘加兰, 等. 糖尿病领域研发态势分析[J]. 遗传, 2022, 44(10): 824-839. [Zhang LW, Ruan MH, Liu JL, et al. Progress on research and development in diabetes mellitus[J]. Hereditas, 2022, 44(10): 824-839.] DOI: 10.16288/j.yczz.22-272.
20.俞洁, 邹永鹏. 黄酮类化合物在动脉粥样硬化中的研究进展[J]. 心血管康复医学杂志, 2024, 33(3): 347-350. [Yu J, Zou YP. Research progress of flavonoids in atherosclerosis[J]. Chinese Journal of Cardiovascular Rehabilitation Medicine, 2024, 33(3): 347-350.] DOI: 10.3969/j.issn.1008-0074.2024.03.21.
21.Lodi F, Jimenez R, Moreno L, et al. Glucuronidated and sulfated metabolites of the flavonoid quercetin prevent endothelial dysfunction but lack direct vasorelaxant effects in rat aorta[J]. Atherosclerosis, 2009, 204(1): 34-39. DOI: 10.1016/j.atherosclerosis.2008.08.007.
22.Dong X, Park S, Lin X, et al. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth[J]. J Clin Invest. 2006, 116(1): 101-114. DOI: 10.1172/JCI25735.
23.Miao LC, Zhang HL, Cheong MS, et al. Anti-diabetic potential of apigenin, luteolin, and baicalein via partially activating PI3K/Akt/Glut-4 signaling pathways in insulin-resistant HepG2 cells[J]. Food Sci Hum Wellness, 2023, 12(6): 1991-2000. DOI: 10.1016/j.fshw.2023.03.021.
24.Li ZY, Zhou YM, Zhang N, et al. Evaluation of the anti-inflammatory activity of luteolin in experimental animal models[J]. Planta Med, 2007, 73(3): 221-226. DOI: 10.1055/s-2007-967122.
25.杜贯涛, 彭蕴茹, 刘国卿. 木犀草素对H2O2诱导乳鼠心肌细胞损伤的保护作用[J]. 江苏中医药, 2006, 27(11): 74-75. [Du GT, Peng YR, Liu GQ. Protective effect of lignocaine on H2O2-induced cardiomyocyte damage in suckling rats[J]. Jiangsu Journal of Traditional Chinese Medicine, 2006, 27(11): 74-75.] DOI: 10.3969/j.issn.1672-397X.2006.11.044.
26.祝德秋, 刘皋林. 木樨草素的药理作用研究进展 [J].中国药房, 2010, 21(19): 1807-1810. [Zhu DQ, Liu GL. Progress on the pharmacological effects of mignonette[J]. Chinese Pharmacy, 2010, 21(19): 1807-1810.] https://cstj.cqvip.com/Qikan/Article/Detail?id=33884206&from=Qikan_Search_Index
27.Wei F, Wang A, Wang Q, et al. Plasma endothelial cells-derived extracellular vesicles promote wound healing in diabetes through YAP and the PI3K/Akt/mTOR pathway[J]. Aging (Albany NY), 2020, 12(12): 12002-12018. DOI: 10.18632/aging.103366.
28.骆燕洪, 田宇, 武云凤, 等. 骨化三醇通过磷脂酰肌醇3激酶/蛋白激酶B信号通路对糖尿病足溃疡大鼠创面愈合影响的研究[J]. 中国糖尿病杂志, 2024, 32(7): 532-539. [Luo YH, Tian Y, Wu YF, et al. Effects of calcitriol on PI3K/AKT signaling pathway and wound healing in diabetic foot ulcer rats[J]. Chinese Journal of Diabetes, 2024, 32(7): 532-539.] DOI: 10.3969/j.issn.1006-6187.2024.07.010.
29.Kaidonis G, Abhary S, Daniell M, et al. Genetic study of diabetic retinopathy: recruitment methodology and analysis of baseline characteristics[J]. Clin Exp Ophthalmol, 2014, 42(5): 486-493. DOI: 10.1111/ceo.12239.
30.萨其如拉, 蔺晓慧. 血清YKL-40、TNF-α与糖尿病视网膜病变相关性的临床研究[J]. 临床眼科杂志, 2024, 32(2): 127-132. [Shaqirula, Lin XH. Clinical study on the relationship between serum YKL-40, TNF-α and diabetic retinopathy[J]. Journal of Clinical Ophthalmology, 2024, 32(2): 127-132.] DOI: 10.3969/j.issn.1006-8422. 2024.02.007.
31.Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas[J]. Pharmacol Ther, 2007, 113(3): 546-593. DOI: 10.1016/j.pharmthera.2006.11.007.
32.郭莉霞, 殷菲, 刘建辉. 表皮生长因子受体及其配体与胰腺β细胞[J]. 生物医学工程学杂志, 2011, 28(1): 203-207. [Guo LX, Yin F, Liu JH. Epidermal growth factor receptor and ligands in pancreatic β-cell[J]. Journal of Biomedical Engineering, 2011, 28(1): 203-207.] https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC201101045.htm
33.陈家伟. 糖尿病动脉粥样硬化中的炎症机制[J]. 国外医学(内分泌学分册), 2004, 24(4): 289-291. [Chen JW. Inflammatory mechanisms in diabetic atherosclerosis[J]. International Journal of Endocrinology and Metabolism, 2004, (4): 289-291.] DOI: 10.3760/cma.j.issn.1673-4157.2004.04.028.
34.周曼, 吴军, 干定云, 等. HGF通过p-Src调控MAPK/PI3K/AKT信号通路介导HepG2细胞胰岛素抵抗的作用机制[J]. 中国老年学杂志, 2024, 44(15): 3782-3787. [Zhou M, Wu J, Gan DY, et al. Mechanism of action of HGF mediating insulin resistance in HepG2 cells through p-Src regulated MAPK/PI3K/AKT signaling pathway[J]. Chinese Journal of Gerontology, 2024, 44(15): 3782-3787.] https://www.cnki.com.cn/Article/CJFDTotal-ZLXZ202415058.htm
35.Józefiak A, Larska M, Pomorska-Mól M, et al. The IGF-1 signaling pathway in viral infections[J]. Viruses, 2021, 13(8): 1488. DOI: 10.3390/v13081488.