Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.2 Detail

Research progress of traditional Chinese medicine intervention on mitochondrial autophagy in the treatment of diabetic kidney disease

Published on Feb. 28, 2024Total Views: 329 times Total Downloads: 2520 times Download Mobile

Author: WEI Jinfeng 1# WEI Xiaotao 2# WANG Caihong 2 WANG Weiwei 2 ZHANG Xinli 3 HE Zhijun 3 LIU Tao 3

Affiliation: 1. Special Needs Ward, Jiu Gang Hospital, Jiayuguan 735100, Gansu Province, China 2. Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China 3. Department of Nephrology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730000, China

Keywords: Diabetic kidney disease Mitochondria Autophagy Traditional Chinese medicine

DOI: 10.12173/j.issn.1004-4337.202312025

Reference: Wei JF, Wei XT, Wang CH, Wang WW, Zhang XL, He ZJ, Liu T. Research progress of traditional Chinese medicine intervention on mitochondrial autophagy in the treatment of diabetic kidney disease[J]. Journal of Mathematical Medicine, 2024, 37(2): 136-143. DOI: 10.12173/j.issn.1004-4337.202312025[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Diabetic kidney disease (DKD), as the most common microangiopathy of the diabetic renal system, is the main pathogenetic factor of chronic kidney disease and end-stage renal disease. DKD is clinically characterised by glomerular hyperfiltration and proteinuria, blood creatinine, urea nitrogen, and progressively increasing abnormal renal function, and the main pathological changes are dominated by advanced glomerulosclerosis and tubulointerstitial fibrosis. The pathogenesis of DKD is complex. Mitochondria can play a key role in the development of DKD by intervening in the pathogenesis of DKD and participating in the production of end products of advanced glycosylation, reactive oxygen species, endoplasmic reticulum stress, inflammatory factors, and the activation of renin-angiotensin system. Traditional Chinese medicine extracts and traditional Chinese medicine combinations can regulate mitochondrial autophagy, protect and restore mitochondrial function through the intervention of the PTEN-inducible kinase 1 (Pink1)/E3 ubiquitin ligase (Parkin) signalling pathway or mitogenic receptor pathway, and play a role in the prevention, treatment and alleviation of DKD. This paper summarises the research progress of traditional Chinese medicine extracts and traditional Chinese medicine combinations interfering with the expression of mitochondrial autophagy-related mediated signaling pathway in the treatment of DKD, in order to provide reference for the application of traditional Chinese medicine in the prevention and treatment of DKD.

Full-text
Please download the PDF version to read the full text: download
References

1.Sagoo MK, Gnudi L. Diabetic nephropathy: an overview[J]. Methods Mol Biol, 2020, 2067: 3-7. DOI: 10.1007/978-1-4939-9841-8_1.

2.Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities[J]. Clin J Am Soc Nephrol, 2017, 12(12): 2032-2045. DOI: 10.2215/CJN.11491116.

3.Xiao L, Wang M, Yang S, et al. A glimpse of the pathogenetic mechanisms of Wnt/β-catenin signaling in diabetic nephropathy[J]. Biomed Res Int, 2013, 2013: 987064. DOI: 10.1155/2013/987064.

4.Saxena S, Mathur A, Kakkar P. Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy[J]. J Cell Physiol, 2019, 234(11): 19223-19236. DOI: 10.1002/jcp.28712.

5.Han Y, Xu X, Tang C, et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis[J]. Redox Biol, 2018, 16: 32-46. DOI: 10.1016/j.redox.2018.02.013.

6.Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018[J]. Am J Kidney Dis, 2018, 71(6): 884-895. DOI: 10.1053/j.ajkd.2017.10.026.

7.Tu C, Wang L, Wei L. The role of PKM2 in diabetic microangiopathy[J]. Diabetes Metab Syndr Obes, 2022, 15: 1405-1412. DOI: 10.2147/DMSO.S366403.

8.Wei L, Qin Y, Jiang L, et al. PPARγ and mitophagy are involved in hypoxia/reoxygenation-induced renal tubular epithelial cells injury[J]. J Recept Signal Transduct Res, 2019, 39(3): 235-242. DOI: 10.1080/10799893.2019.1660894.

9.Zhang X, Feng J, Li X, et al. Mitophagy in diabetic kidney disease[J]. Front Cell Dev Biol, 2021, 9: 778011. DOI: 10.3389/fcell.2021.778011.

10.Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)[J]. Autophagy, 2021, 17(1): 1-382. DOI: 10.1080/15548627.2020.1797280.

11.Li Q, Xing C, Yuan Y. Mitochondrial targeting of herbal medicine in chronic kidney disease[J]. Front Pharmacol, 2021, 12: 632388. DOI: 10.3389/fphar.2021.632388.

12.Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease: a report from an ADA consensus conference[J]. Am J Kidney Dis, 2017, 64(4): 510-533.. DOI: 10.1053/j.ajkd.2014.08.001.

13.Guan R, Zou W, Dai X, et al. Mitophagy, a potential therapeutic target for stroke[J]. J Biomed Sci, 2018, 25(1): 87. DOI: 10.1186/s12929-018-0487-4.

14.Sekine S, Youle RJ. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol[J]. BMC Biol, 2018, 16(1): 2. DOI: 10.1186/s12915-017-0470-7.

15.Liu T, Yang Q, Zhang X, et al. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis[J]. Life Sci, 2020, 257: 118116. DOI: 10.1016/j.lfs.2020.118116.

16.Chen K, Dai H, Yuan J, et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy[J]. Cell Death Dis, 2018, 9(2): 105. DOI: 10.1038/s41419-017-0127-z.

17.Chen K, Feng L, Hu W, et al. Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy[J]. FASEB J, 2019, 33(3): 4571-4585. DOI: 10.1096/fj.201801749RRR.

18.Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney[J]. Nat Rev Nephrol, 2017, 13(10): 629-646. DOI: 10.1038/nrneph.2017.107.

19.Li W, Du M, Wang Q, et al. FoxO1 promotes mitophagy in the podocytes of diabetic male mice via the PINK1/Parkin pathway[J]. Endocrinology, 2017, 158(7): 2155-2167. DOI: 10.1210/en.2016-1970.

20.Shang J, Wang L, Zhang Y, et al. Chemerin/ChemR23 axis promotes inflammation of glomerular endothelial cells in diabetic nephropathy[J]. J Cell Mol Med, 2019, 23(5): 3417-3428. DOI: 10.1111/jcmm.14237.

21.Jiang H, Shao X, Jia S, et al. The mitochondria-targeted metabolic tubular injury in diabetic kidney disease[J]. Cell Physiol Biochem, 2019, 52(2): 156-171. DOI: 10.33594/000000011.

22.Wang W, Sun W, Cheng Y, et al. Role of sirtuin-1 in diabetic nephropathy[J]. J Mol Med (Berl), 2019, 97(3): 291-309. DOI: 10.1007/s00109-019-01743-7.

23.Sheng J, Li H, Dai Q, et al. NR4A1 promotes diabetic nephropathy by activating Mff-mediated mitochondrial fission and suppressing Parkin-mediated mitophagy[J]. Cell Physiol Biochem, 2018, 48(4): 1675-1693. DOI: 10.1159/000492292.

24.Nguyen TN, Padman BS, Lazarou M. Deciphering the molecular signals of PINK1/Parkin mitophagy[J]. Trends Cell Biol, 2016, 26(10): 733-744. DOI: 10.1016/j.tcb.2016.05.008.

25.Zhuang N, Li L, Chen S, et al. PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control[J]. Cell Death Dis, 2016, 7(12): e2501. DOI: 10.1038/cddis.2016.396.

26.Wang L, Jiang W, Wang J, et al. Puerarin inhibits FUNDC1-mediated mitochondrial autophagy and CSE-induced apoptosis of human bronchial epithelial cells by activating the PI3K/AKT/mTOR signaling pathway[J]. Aging (Albany NY), 2022, 14(3): 1253-1264. DOI: 10.18632/aging.203317.

27.Torres-Odio S, Lei Y, Gispert S, et al. Loss of mitochondrial protease CLPP activates type I IFN responses through the mitochondrial DNA-cGAS-STING signaling axis[J]. J Immunol, 2021, 206(8): 1890-1900. DOI: 10.4049/jimmunol.2001016.

28.Matsuda N. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade[J]. J Biochem, 2016, 159(4): 379-385. DOI: 10.1093/jb/mvv125.

29.Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy[J]. Nature, 2015, 524(7565): 309-314. DOI: 10.1038/nature14893.

30.Heo JM, Ordureau A, Paulo JA, et al. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy[J]. Mol Cell, 2015, 60(1): 7-20. DOI: 10.1016/j.molcel.2015.08.016.

31.Guo F, Wang W, Song Y, et al. LncRNA SNHG17 knockdown promotes Parkin-dependent mitophagy and reduces apoptosis of podocytes through Mst1[J]. Cell Cycle, 2020, 19(16): 1997-2006. DOI: 10.1080/15384101.2020.1783481.

32.Yi X, Yan W, Guo T, et al. Erythropoietin mitigates diabetic nephropathy by restoring PINK1/Parkin-mediated mitophagy[J]. Front Pharmacol, 2022, 13: 883057. DOI: 10.3389/fphar.2022.883057.

33.Wen D, Tan RZ, Zhao CY, et al. Astragalus mongholicus Bunge and Panax notoginseng (Burkill) F.H. Chen formula for renal injury in diabetic nephropathy-in vivo and in vitro evidence for autophagy regulation[J]. Front Pharmacol, 2020, 11: 732. DOI: 10.3389/fphar.2020.00732.

34.Sun J, Zhu H, Wang X, et al. CoQ10 ameliorates mitochondrial dysfunction in diabetic nephropathy through mitophagy[J]. J Endocrinol, 2019, 240(3): 445-465. DOI: 10.1530/JOE-18-0578.

35.赵隽永, 刘虹. 雷公藤制剂治疗Ig A肾病的作用机制[J]. 中南大学学报(医学版), 2022, 47(5): 573-582. [Zhao JY, Liu H. Mechanism for the therapeutic effect of Tripterygium wilfordii Hook. f. preparations on IgA nephropathy[J].Journal of Central South University (Medical Science), 2022, 47(5): 573-582.] https://kns.cnki.net/kcms2/article/abstract?v=hqt_j-uEELGsReKOxc9Y_pXrMLWPek7OtOC1cadOvH-nlsBbyjmAM64_W352no89mtYiPFzeWZr03nEl1PTw2eECSRXew4LIYmJ0TIh6210NLA1Lhps4859Ph1Brc-C3TmasQ1EHbmcGwmhsfwkeTw==&uniplatform=NZKPT&language=CHS.

36.Tao M, Zheng D, Liang X, et al. Tripterygium glycoside suppresses epithelial-to-mesenchymal transition of diabetic kidney disease podocytes by targeting autophagy through the mTOR/Twist1 pathway[J]. Mol Med Rep, 2021, 24(2): 592. DOI: 10.3892/mmr.2021.12231.

37.刘新辉. 黄芪甲苷对高糖诱导肾小管上皮细胞凋亡及线粒体自噬相关蛋白表达的影响[J]. 广州中医药大学学报, 2019, 36(2): 251-255. [Liu XH. Effects of astragaloside IV on apoptosis- and mitophagy-related proteins in

high glucose-induced renal tubular epithelial cell apoptosis[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2019, 36(2): 251-255.] DOI: 10.13359/j.cnki.gzxbtcm.2019.02.021.

38.Qin X, Jiang M, Zhao Y, et al. Berberine protects against diabetic kidney disease via promoting PGC-1α-regulated mitochondrial energy homeostasis[J]. Br J Pharmacol, 2020, 177(16): 3646-3661. DOI: 10.1111/bph.14935.

39.郑华, 魏秋梅, 孟春梅, 等. 瑶山甜茶通过调节线粒体自噬改善糖尿病大鼠并发症的实验研究[J]. 中国民族民间医药, 2019, 28(10): 22-26. [Zheng H, Wei QM, Meng CM, et al. The study of rubus suavissimus S.Lee (RS) improving the diabetic complications of the streptozotocin (STZ) rats by promoting mitophagy[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2019, 28(10): 22-26.] DOI: 10.3969/j.issn.1007-8517.2019.10.zgmzmjyyzz201910007.

40.Xiang J, Zhang C, Di T, et al. Salvianolic acid B alleviates diabetic endothelial and mitochondrial dysfunction by down-regulating apoptosis and mitophagy of endothelial cells[J]. Bioengineered, 2022, 13(2): 3486-3502. DOI: 10.1080/21655979.2022.2026552.

41.田东. 葛根提取物对镉致糖尿病肾病小鼠保护作用的研究[D]. 西安: 陕西科技大学, 2019. [Tian D. Study on the protective effect of Pueraria lobata extract on cadmium-induced diabetic nephropathy in mice[D]. Xi'an: Shaanxi University of Science and Technology, 2019.] https://kns.cnki.net/kcms2/article/abstract?v=hqt_j-uEELG9wgjGDk11kp7cm3cWxbaBetm-wMLHyWOBHvMqMInX0X1cRwb0AlWHwKHyEsVKKCwMOMDYShY2CEoZIaGEhflqMWjZQud4UJf8RIR9rVJaXFd61hfmb2C1iRC-KsFRokXWoX5fG_Na2A==&uniplatform=NZKPT&language=CHS.

42.Zhang L, Yang Z, Zhao Y, et al. Renoprotective effects of Gushen Jiedu capsule on diabetic nephropathy in rats[J]. Sci Rep, 2020, 10(1): 2040. DOI: 10.1038/s41598-020-58781-2.

43.Jin D, Liu F, Yu M, et al. Jiedu Tongluo Baoshen formula enhances podocyte autophagy and reduces proteinuria in diabetic kidney disease by inhibiting PI3K/Akt/mTOR signaling pathway[J]. J Ethnopharmacol, 2022, 293: 115246. DOI: 10.1016/j.jep.2022.115246.

44.Han J, Zhang Y, Shi X, et al. Tongluo Digui decoction treats renal injury in diabetic rats by promoting autophagy of podocytes[J]. J Tradit Chin Med, 2021, 41(1): 125-132. DOI: 10.19852/j.cnki.jtcm.2021.01.014.

45.Liu X, Lu J, Liu S, et al. Huangqi-Danshen decoction alleviates diabetic nephropathy in db/db mice by inhibiting PINK1/Parkin-mediated mitophagy[J]. Am J Transl Res, 2020, 12(3): 989-998. DOI: https://pubmed.ncbi.nlm.nih.gov/32269729/.

46.李小会, 贾国华, 王琦, 等. 通络益肾方对糖尿病肾病大鼠线粒体功能障碍的保护作用[J]. 中成药, 2021, 43(2): 475-480. [Li XH, Jia GH, Wang Q, et al. Protective effect of Tongluo Yishen Formula on mitochondrial dysfunction in rats with diabetic nephropathy[J]. Chinese Traditional Patent Medicine, 2021, 43(2): 475-480.] DOI: 10.3969/j.issn.1001-1528.2021.02.035.

47.万红波, 郑永丽, 郑栓, 等. 益肾化湿颗粒对2型糖尿病肾病大鼠肾功能的影响[J]. 中国中西医结合肾病杂志, 2022, 23(2): 130-132, 192. [Wan HB, Zheng YL, Zheng S, et al. Effects of Yishen Huayu Granule on renal function in rats with type 2 diabetic nephropathy[J]. Chinese Journal of Intergrated Traditional and Western Nephrology, 2022, 23(2): 130-132, 192.] DOI: 10.3969/j.issn.1009-587X.2022.02.009.

Popular papers
Last 6 months