Objective To explore the mechanism of isoliquiritigenin in the treatment of oral submucosal fibrosis by network pharmacology, molecular docking technology and cell experiments.
Methods The relevant action targets of isoliquiritigenin were searched in the TCMSP, Comparative Toxicogenomics Database and PharmMapper database; the disease targets of oral submucosal fibrosis were found in the GeneCards, DisGeNet and OMIM databases. The common targets of the two were screened by the Venny website and the protein-protein interaction (PPI) network analysis of these targets was carried out using the STRING database. The common targets were input into the DAVID database for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) bioinformatics analysis. Molecular docking verification was performed on isoliquiritigenin and core targets using AutoDock Vina 1.2.x software. After culturing human immortalized keratinocytes (HaCaT cell line) in vitro, the effect of different concentrations of isoliquiritigenin on the survival rate of HaCaT cells was studied by the CCK-8 method. According to the CCK-8 results, 20 μM, 40 μM and 80 μM isoliquiritigenin concentrations were selected for subsequent experiments. The cells were divided into blank group, model group, low, medium and high dose isoliquiritigenin groups. The mRNA expression levels of MMP9, EGFR, TGFB1, TNF and MAPK3 in each group of cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR).
Results A total of 391 potential action targets of isoliquiritigenin, 969 related targets of oral submucous fibrosis, and 65 intersection targets of the two were screened out. The top-ranked active components of the isoliquiritigenin action targets in terms of degree value included IL6, MMP9, TGFB1, TNF, AKT1, etc. GO analysis indicated that the biological processes (BP) mainly involved the insulin-like growth factor receptor signaling pathway, the cellular response to reactive oxygen species, negative regulation of the apoptotic process, the cellular response to cadmium ions, extracellular matrix degradation, etc. The cellular components (CC) mainly involved the cytoplasm, receptor complex, extracellular matrix, mitochondria, focal adhesion, etc. The molecular functions (MF) mainly involved homotypic protein binding, enzyme binding, endopeptidase activity, protein homodimerization activity, protein kinase activity, etc. The KEGG analysis results demonstrated that the treatment of oral submucous fibrosis by isoliquiritigenin was related to pathways in cancer, the FoxO signaling pathway, the HIF-1 signaling pathway, the MAPK signaling pathway, the AGE-RAGE signaling pathway, etc. The molecular docking results showed that isoliquiritigenin had a strong binding ability to targets such as MMP9, EGFR, TGFB1, TNF and MAPK3. The in vitro cell experimental results showed that, compared with the blank group, the mRNA levels of MMP9, EGFR, TGFB1, TNF, and MAPK3 in the model group were significantly increased (P<0.01). Compared with the model group, the mRNA levels of MMP9, EGFR, TGFB1, TNF, and MAPK3 in the low-dose, medium-dose, and high-dose isoliquiritigenin groups were significantly decreased (P<0.01).
Conclusion The molecular mechanism of isoliquiritigenin in the treatment of oral submucous fibrosis might be related to the inhibition of the expression of cytokines such as MMP9, EGFR, TGFB1, TNF, and MAPK3, involving processes such as cell proliferation and differentiation, extracellular matrix synthesis and deposition, epithelial-mesenchymal transition, the initiation of the inflammatory response and intracellular signal transduction.
1.陈灵, 杜永秀, 徐普. 口腔黏膜下纤维性变的治疗研究进展[J]. 河北医药, 2024, 46(17): 2675-2679, 2685. [Chen L, Du YX, Xu P. Research progress of the treatment of oral submucosal fibrous[J]. Hebei Medical Journal, 2024, 46(17): 2675-2679, 2685.] DOI: 10.3969/j.issn.1002-7386.2024.17.026.
2.郭锦材, 谢辉. 口腔黏膜下纤维性变治疗的循证医学研究[J]. 口腔疾病防治, 2024, 32(12): 907-915. [Guo JC, Xie H. Evidence-based medicine research for the treatment of oral submucous fibrosis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2024, 32(12): 907-915.] DOI: 10.12016/j.issn.2096-1456.202440252.
3.Yang L, Nie H, Du Y, et al. Isoliquiritigenin exhibits anti-inflammatory responses in acute lung injury by covalently binding to the myeloid differentiation protein-2 domain[J]. Phytother Res, 2025, 39(2): 922-937. DOI: 10.1002/ptr.8411.
4.Yahya MA, Alshammari GM, Osman MA, et al. Isoliquiritigenin prevents the development of nephropathy by an HFD in rats through the induction of antioxidant production and inhibition of the MD-2/TLR4/NF-κB pathway[J]. Biology (Basel), 2024, 13(12): 984. DOI: 10.3390/biology13120984.
5.Luo F, Tang Y, Zheng L, et al. Isoliquiritigenin inhibits the growth of colorectal cancer cells through the ESR2/PI3K/AKT signalling pathway[J]. Pharmaceuticals (Basel), 2023, 17(1): 43. DOI: 10.3390/ph17010043.
6.Liu R, Zhang Y, Liu M, et al. Natural molecule isoliquiritigenin mitigates MASH and liver fibrosis in mice by promoting autophagy through the PI3K/Akt signaling pathway[J]. J Nutr Biochem, 2025, 136: 109808. DOI: 10.1016/j.jnutbio.2024.109808.
7.He J, Peng H, Wang M, et al. Isoliquiritigenin inhibits TGF-β1-induced fibrogenesis through activating autophagy via PI3K/AKT/mTOR pathway in MRC-5 cells[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(8): 810-820. DOI: 10.1093/abbs/gmaa067.
8.Liu N, Liu M, Jiang M, et al. Isoliquiritigenin alleviates the development of alcoholic liver fibrosis by inhibiting ANXA2[J]. Biomed Pharmacother, 2023, 159: 114173. DOI: 10.1016/j.biopha.2022.114173.
9.Zhang P, Zhang D, Zhou W, et al. Network pharmacology: towards the artificial intelligence-based precision traditional Chinese medicine[J]. Brief Bioinform, 2023, 25(1): bbad518. DOI: 10.1093/bib/bbad518.
10.Crampon K, Giorkallos A, Deldossi M, et al. Machine-learning methods for ligand-protein molecular docking[J]. Drug Discov Today, 2022, 27(1): 151-164. DOI: 10.1016/j.drudis.2021.09.007.
11.Tang Y, Luo H, Xiao Q, et al. Isoliquiritigenin attenuates septic acute kidney injury by regulating ferritinophagy-mediated ferroptosis[J]. Ren Fail, 2021, 43(1): 1551-1560. DOI: 10.1080/0886022X.2021.2003208.
12.Jiao X, Zhang Y, Wang Z, et al. Isoliquiritigenin, an extract from licorice, attenuates dexamethasone-induced muscle atrophy via Akt/mTOR pathway[J]. Mol Nutr Food Res, 2025, 69(7): e70000. DOI: 10.1002/mnfr.70000.
13.Choudhari S, Kulkarni D, Patankar S, et al. Linking inflammation and angiogenesis with fibrogenesis: expression of FXIIIA, MMP-9, and VEGF in oral submucous fibrosis[J]. Rev Esp Patol, 2024, 57(1): 15-26. DOI: 10.1016/j.patol.2023.11.005.
14.Jian M, Sun X, Cheng G, et al. Discovery of phenolic matrix metalloproteinase inhibitors by peptide microarray for osteosarcoma treatment[J]. J Nat Prod, 2022, 85(10): 2424-2432. DOI: 10.1021/acs.jnatprod.2c00626.
15.Wang TT, Chen ZZ, Xie P, et al. Isoliquiritigenin suppresses the proliferation and induced apoptosis via miR-32/LATS2/Wnt in nasopharyngeal carcinoma[J]. Eur J Pharmacol, 2019, 856: 172352. DOI: 10.1016/j.ejphar.2019.04.033.
16.Talukdar S, Emdad L, Das SK, et al. EGFR: an essential receptor tyrosine kinase-regulator of cancer stem cells[J]. Adv Cancer Res, 2020, 147: 161-188. DOI: 10.1016/bs.acr.2020.04.003.
17.He C, Wang W, Wan W, et al. Tyrosine sulphation of CXCR4 induces the migration of fibroblast in OSF[J]. Oral Dis, 2023, 29(4): 1782-1790. DOI: 10.1111/odi.14150.
18.Ye L, Zhang J, Zhang Y, et al. Isoliquiritigenin suppressed esophageal squamous carcinoma growth by blocking EGFR activation and inducing cell cycle arrest[J]. Biomed Res Int, 2020, 2020: 9259852. DOI: 10.1155/2020/9259852.
19.曾繁佐, 欧阳银, 陈博威, 等. 基于网络毒理学及实验验证探讨槟榔对口腔黏膜下纤维化的影响[J]. 湖南中医药大学学报, 2024, 44(8): 1448-1458. [Zeng FZ, Ouyang Y, Chen BW, et al. Effects of betel nut on oral submucosal fibrosis based on network toxicology and experimental verification[J]. Journal of Hunan University of Chinese Medicine, 2024, 44(8): 1448-1458.] DOI: 10.3969/j.issn.1674-070X.2024.08.014.
20.Zhang WF, Tao X, Chen C, et al. Isoliquiritigenin attenuates neuroinflammation after subarachnoid hemorrhage through inhibition of NF-κB-mediated NLRP3 inflammasome activation[J]. Chem Biol Drug Des, 2024, 103(2): e14436. DOI: 10.1111/cbdd.14436.
21.Tarbit E, Singh I, Peart JN, et al. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells[J]. Heart Fail Rev, 2019, 24(1): 1-15. DOI: 10.1007/s10741-018-9720-1.
22.唐智群, 鲍喆煊, 聂敏. 红花-牛膝治疗口腔黏膜下纤维化作用机制的网络药理学分析[J]. 药学研究, 2024, 43(3): 220-226. [Tang ZQ, Bao ZX, Nie M. Analysis of the mechanism of safflower-achyranthes bidentata in treatincoral submucous fibrosis based on network pharmacology[J]. Journal of Pharmaceutical Research, 2024, 43(3): 220-226.] DOI: 10.13506/j.cnki.jpr.2024.03.003.
23.Huang Q, Chen J, Liao S, et al. The SGLT2 inhibitor empagliflozin inhibits skeletal muscle fibrosis in naturally aging male mice through the AMPKα/MMP9/TGF-β1/Smad pathway[J]. Biogerontology, 2024, 25(3): 567-581. DOI: 10.1007/s10522-024-10093-y.
24.Cai Q, Wang Z, Zhang R, et al. Huangjia Ruangan granule inhibits inflammation in a rat model with liver fibrosis by regulating TNF/MAPK and NF-κB signaling pathways[J]. Evid Based Complement Alternat Med, 2022, 2022: 8105306. DOI: 10.1155/2022/8105306.
25.Hakuno F, Takahashi SI. IGF1 receptor signaling pathways[J]. J Mol Endocrinol, 2018, 61(1): T69-T86. DOI: 10.1530/JME-17-0311.
26.Wang Y, Wang P, Yu Y, et al. Hepatocyte Ninjurin2 promotes hepatic stellate cell activation and liver fibrosis through the IGF1R/EGR1/PDGF-BB signaling pathway[J]. Metabolism, 2023, 140: 155380. DOI: 10.1016/j.metabol.2022.155380.
27.Lin CY, Lin YC, Paul CR, et al. Isoliquiritigenin ameliorates advanced glycation end-products toxicity on renal proximal tubular epithelial cells[J]. Environ Toxicol, 2022, 37(8): 2096-2102. DOI: 10.1002/tox.23553.
28.邹红, 祁硕, 邓芳萍, 等. 三七总皂苷通过激活Nrf2/GCLC信号通路抑制槟榔碱诱导的HaCaT细胞氧化应激而缓解口腔黏膜下纤维化[J]. 中国病理生理杂志, 2024, 40(5): 908-916. [Zou H, Qi S, Deng FP, et al. Panax notoginseng saponins alleviate oral submucous fibrosis by inhibitincarecoline-induced oxidative stress in HaCaT cells via activating Nrf2/GCLC signaling pathway[J]. Chinese Journal of Pathophysiology, 2024, 40(5): 908-916.] DOI: 10.3969/j.issn.1000-4718.2024.05.016.
29.Lan X, Wang Q, Liu Y, et al. Isoliquiritigenin alleviates cerebral ischemia-reperfusion injury by reducing oxidative stress and ameliorating mitochondrial dysfunction via activating the Nrf2 pathway[J]. Redox Biol, 2024, 77: 103406. DOI: 10.1016/j.redox.2024.103406.
30.张锋娟, 李伟, 薛伟, 等. 口腔黏膜下纤维化和癌变患者口腔黏膜组织细胞凋亡指数及其对癌变发生发展的影响[J]. 临床和实验医学杂志, 2019, 18(11): 1176-1179. [Zhang FJ, Li W, Xue W, et al. Measurement of apoptotic index of oral mucosal tissue in patients with orasubmucosal fibrosis and carcinogenesis and its effect on carcinogenesisand development[J]. Journal of Clinical and Experimental Medicine, 2019, 18(11): 1176-1179.] DOI: 10.3969/j.issn.1671-4695.2019.11.016.
31.Hung SY, Chen JL, Tu YK, et al. Isoliquiritigenin inhibits apoptosis and ameliorates oxidative stress in rheumatoid arthritis chondrocytes through the Nrf2/HO-1-mediated pathway[J]. Biomed Pharmacother, 2024, 170: 116006. DOI: 10.1016/j.biopha.2023.116006.
32.Zhao TT, Xu YQ, Hu HM, et al. Isoliquiritigenin (ISL) and its formulations: potential antitumor agents[J]. Curr Med Chem, 2019, 26(37): 6786-6796. DOI: 10.2174/0929867325666181112091700.
33.Zhang L, Tan J, Liu Y, et al. Curcumin relieves arecoline-induced oral submucous fibrosis via inhibiting the LTBP2/NF-κB axis[J]. Oral Dis, 2024, 30(4): 2314-2324. DOI: 10.1111/odi.14656.
34.Li HS, Zhou YN, Li L, et al. HIF-1α protects against oxidative stress by directly targeting mitochondria[J]. Redox Biol, 2019, 25: 101109. DOI: 10.1016/j.redox.2019.101109.
35.Yu M, Pan Q, Li W, et al. Isoliquiritigenin inhibits gastric cancer growth through suppressing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α mediated energy metabolic collapse[J]. Phytomedicine, 2023, 121: 155045. DOI: 10.1016/j.phymed.2023.155045.
36.梁国新, 唐红悦, 郭畅, 等. miR-224-5p调控PI3K/Akt/FoxO1轴抑制氧化应激减轻缺氧/复氧诱导的心肌细胞损伤[J]. 南方医科大学学报, 2024, 44(6): 1173-1181. [Liang GX, Tang HY, Guo C, et al. miR-224-5p regulates the PI3K/Akt/FoxO1 axis to inhibit oxidative stress and alleviate hypoxia/reoxygenation-induced cardiomyocyte injury[J]. Journal of Southern Medical University, 2024, 44(6): 1173-1181.] DOI: 10.12122/j.issn.1673-4254.2024.06.19.
37.Link P, Wink M. Isoliquiritigenin exerts antioxidant activity in Caenorhabditis elegans via insulin-like signaling pathway and SKN-1[J]. Phytomedicine, 2019, 55: 119-124. DOI: 10.1016/j.phymed.2018.07.004.
38.薛晓霞, 张丽丽, 张丽娟, 等. 健脾益肾活血方联合达格列净对糖尿病肾病患者炎症因子、氧化应激和血清AGEs、NGAL、MCP-1的影响[J]. 现代生物医学进展, 2024, 24(11): 2150-2154. [Xue XX, Zhang LL, Zhang LJ, et al. Effects of Jianpi Yishen Huoxue decoction combined with dapagliflozin on inflammatory factors, oxidative stress and serum AGEs, NGAL, MCP-1 in patients with diabetic nephropathy[J]. Progress in Modern Biomedicine, 2024, 24(11): 2150-2154.] DOI: 10.13241/j.cnki.pmb.2024.11.028.
39.宋子毅, 杨超, 张云龙, 等. 基于基因表达综合数据库芯片挖掘结合网络药理学与分子对接探讨芒果苷治疗口腔黏膜下纤维化的机制研究[J]. 华西口腔医学杂志, 2024, 42(4): 444-451. [Song ZY, Yang C, Zhang YL, et al. Mechanism of mangiferin in the treatment of oral submucous fibrosis based on Gene Expression Omnibus data-base chip mining combined with network pharmacology and molecular docking[J]. West China Journal of Stomatology, 2024, 42(4): 444-451.] DOI: 10.7518/hxkq.2024.2024050.
40.Jian M, Sun X, Cheng G, et al. Discovery of phenolic matrix metalloproteinase inhibitors by peptide microarray for osteosarcoma treatment[J]. J Nat Prod, 2022, 85(10):2424-2432. DOI: 10.1021/acs.jnatprod.2c00626.
41.Wang K, Chu Y, Zhang H, et al. FOXD3 suppresses the proliferation of CRC bone metastatic cells via the Ras/Raf/MEK/ERK signaling pathway[J]. Comb Chem High Throughput Screen, 2024, 27(3): 436-445. DOI: 10.2174/1386207326666230505111008.