Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.4 Detail

Research progress on the mechanism of effective components of traditional Chinese medicine in the intervention of exercise-induced skeletal muscle damage

Published on Apr. 28, 2024Total Views: 1606 times Total Downloads: 469 times Download Mobile

Author: ZHANG Bifeng 1 LIU Jianjun 1 AN Wenbo 1 YUAN Baohua 2 LIU Xiaoting 2

Affiliation: 1. Department of Orthopaedics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou 730000, China 2. Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China

Keywords: Exercise-induced skeletal muscle damage Active components of traditional Chinese medicine Oxidative stress Mitochondria Signaling pathway

DOI: 10.12173/j.issn.1004-4337.202312176

Reference: Zhang BF, Liu JJ, An WB, Yuan BH, Liu XT. Research progress on the mechanism of effective components of traditional Chinese medicine in the intervention of exercise-induced skeletal muscle damage[J]. Journal of Mathematical Medicine, 2024, 37(4): 303-312. DOI: 10.12173/j.issn.1004-4337.202312176[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Exercise-induced skeletal muscle damage (EIMD) is one of the diseases with high incidence in sports medicine, which has a great impact on the daily life and work of patients. Studies have shown that the effective components of traditional Chinese medicine, including saponins, polyphenols, polysaccharides, flavonoids and other active substances, such as isothiocyanates, phenylpropanoids and carboxylic acids, can inhibit inflammation, oxidative stress and mitochondrial autophagy in experimental animals and patients for clinical observation, promote the proliferation and differentiation of muscle satellite cells, regulate nuclear factor erythroid-2 related factor 2 (Nrf2)/heme-oxygenase-1 (HO-1), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt), phosphorylation mitogen 38-activated protein kinase (p38  MAPK) and other related signaling pathways, and promote the repair of damaged skeletal muscle tissue and speed up the repair process. Traditional Chinese medicine has the characteristics of long history, few side effects, multiple treatment targets and affordable price, so it has great potential and bright application prospect in the treatment of EIMD. This article reviews the mechanism of effective components of traditional Chinese medicine in the treatment of EIMD in recent years, in order to provide reference and basis for the treatment and rehabilitation of EIMD.

Full-text
Please download the PDF version to read the full text: download
References

1.Allard NAE, Janssen L, Lagerwaard B, et al. Prolonged moderate-intensity exercise does not increase muscle injury markers in symptomatic or asymptomatic statin users[J]. J Am Coll Cardiol, 2023, 81(14): 1353-1364. DOI: 10.1016/j.jacc.2023.01.043.

2.D'amico A, Cavarretta E, Fossati C, et al. Platelet activation favours NOX2-mediated muscle damage in elite athletes: the role of cocoa-derived polyphenols[J]. Nutrients, 2022, 14(8): 1558. DOI: 10.3390/nu14081558.

3.Caldas LC, Salgueiro RB, Clarke ND, et al. Effect of caffeine ingestion on indirect markers of exercise-induced muscle damage: a systematic review of human trials[J]. Nutrients, 2022, 14(9): 1769. DOI: 10.3390/nu14091769.

4.Curty VM, Zovico PVC, Salgueiro RB, et al. Blood flow restriction attenuates muscle damage in resistance exercise performed until concentric muscle failure[J]. Int J Exerc Sci, 2023, 16(2): 469-481. https://pubmed.ncbi.nlm.nih.gov/37124449/.

5.黄博, 阮磊, 王兰兰, 等. 推拿治疗骨骼肌损伤的分子生物学机制研究进展[J]. 湖南中医药大学学报, 2023, 43(4): 753-758. [Huang B, Ruan L, Wang LL, et al. Research progress on the molecular biological mechanism of tuina in treating skeletal muscle injury[J]. Journal of Traditional Chinese Medicine University of Hunan, 2023, 43(4): 753-758.] DOI: 10.3969/j.issn.1674-070X.2023.04.029.

6.华晓琼, 李彦杰, 张淑芹, 等. 中医药调控脊髓损伤后肢体痉挛状态的机制及研究进展[J]. 中国老年学 杂志, 2023, 43(7): 1779-1782. [Hua XQ, Li YJ, Zhang SQ, et al. Mechanism and research progress of traditional Chinese medicine in regulating limb spasticity after spinal cord injury[J]. Chinese Journal of Gerontology, 2023, 43(7): 1779-1782.] DOI: 10.3969/j.issn.1005-9202.2023.07.061.

7.杜海涛, 王琳, 丁洁, 等. 分子对接在中药开发的应用现状与挑战[J/OL]. 中国中药杂志: 1-11. (2023- 10-17) [Du HT, Wang L, Ding J, et al. Application status and challenges of molecular docking in the development of traditional Chinese medicine[J/OL]. China Journal of Chinese Materia Medica: 1-11. (2023-10-17)] https://doi.org/10.19540/j.cnki.cjcmm.20231013.703.

8.张帅军, 唐月梅, 张大鼎, 等. 刺梨果粉缓解过度训练大鼠骨骼肌氧化应激损伤效果的研究[J]. 食品工业科技, 2022, 43(12): 338-346. [Zhang SJ, Tang YM, Zhang  DD, et al. Effect of rosa roxburghii tratt powder on alleviating oxidative stress injury of skeletal muscle in overtrained rat[J]. Science and Technology of Food Industry, 2022, 43(12): 338-346.] DOI: 10.13386/j.issn1002-0306.2021090352.

9.Shabani M, Sadeghi A, Hosseini H, et al. Resveratrol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage polarization and increasing the regulatory T cell population[J]. Sci Rep, 2020, 10(1): 3791. DOI: 10.1038/s41598-020-60185-1.

10.徐明奎, 许日明, 林业武, 等. 柚皮素调控巨噬细胞极化和肌卫星细胞增殖修复骨骼肌损伤[J]. 中国组织工程研究, 2023, 27(14): 2133-2138. [Xu MK, Xu RM, Lin YW, et al. Naringenin repairs skeletal muscle injury by regulating polarization of macrophages and proliferation of muscle satellite cells[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(14): 2133-2138.] https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjMxMjI2Eg14ZGtmMjAyMzE0MDAzGgh0dXprZmgxMg%3D%3D.

11.常燕云, 朱云峰, 边祥雨, 等. 高原低氧环境下辣木叶提取物对小鼠抗疲劳的作用及其机制[J/OL]. 营养学报: 1-11. (2024-01-23). [Chang YY, Zhu YF, Bian XY, et al. Anti-fatigue effect of Moringa oleifera leaves extract and mechanism explore under highland hypoxia environment[J/OL]. Acta Nutrimenta Sinica: 1-11. (2024-01-23)] https://link.cnki.net/urlid/12.1074.r.20240118.1442.002.

12.夏庚, 韩芸. 毛竹木犀草素-6-C-新橙皮苷通过调节IRF4PTG糖原途径促进力竭运动小鼠的糖原合成[J]. 分子植物育种, 2022, 20(15): 5143-5149. [Xia G, Han Y. Mao bamboo LN promotes glycogen synthesis in exhaustive exercise mice by regulating the IRF4PTG glycogen pathway[J]. Molecular Plant Breeding, 2022, 20(15): 5143-5149.] DOI: 10.13271/j.mpb.020.005143.

13.袁书立. 竹叶黄酮活性物质对运动性骨骼肌损伤大鼠的干预作用及机制[J]. 分子植物育种, 2023, 21(6): 2045-2050. [Yuan SL. Intervention effect and mechanism of bamboo leaf flavonoids on exercise-induced skeletal muscle injury in rats[J]. Molecular Plant Breeding, 2023, 21(6): 2045-2050.] DOI: 10.13271/j.mpb.021.002045.

14.周海涛, 曹建民, 胡戈, 等. 低聚原花青素对过度训练大鼠骨骼肌损伤的保护作用机制[J]. 生命科学研究, 2021, 25(1): 24-30. [Zhou HT, Cao JM, Hu G, et al. Protective effect of oligomerized proanthocyanidins on skeletal muscle injury in overtraining rats[J]. Life Science Research, 2021, 25(1): 24-30.] DOI: 10.16605/j.cnki.1007-7847.2020.01.0112.

15.陈诚. 连翘提取物可有效缓解力竭运动导致的骨骼肌组织氧化损伤[J]. 基因组学与应用生物学, 2018, 37(1): 53-58. [Chen C. Effective relief of forsythia suspensa extract in the skeletal muscle oxidative injury by acute exhaustive exercise[J]. Genomics and Applied Biology, 2018, 37(1): 53-58.] DOI: 10.13417/j.gab.037.000053.

16.朱晓东. 葛根黄酮对大强度运动大鼠骨骼肌氧化应激损伤的保护作用及其机制研究[J]. 美食研究, 2020, 37(3): 78-82. [Zhu XD. Protective effect of pueraria flavonoids on oxidative stress injury of skeletal muscle in high-intensity exercise rats and its mechanism[J]. Journal of Researches on Dietetic Science and Culture, 2020, 37(3): 78-82.] DOI: 10.3969/j.issn.1009-4717.2020.03.015.

17.马玉珍,舒田,潘子君,等.槲皮素促进大鼠离心运动后骨骼肌线粒体自噬相关蛋白的表达[J].武警后勤学院学报(医学版), 2018, 27(6): 477-480. [Ma YZ, Shu T, Pan  ZJ, et al. Quercetin elevates the expression of mitochondrial autophagy related proteins in rat skeletal muscle after eccentric exercise[J]. Journal of Logistics University of PAP (Medical Sciences), 2018, 27(6): 477-480.] DOI: 10.16548/j.2095-3720.2018.06.004.

18.郭涛, 贾新会. 漆黄素对力竭运动大鼠骨骼肌细胞凋亡和线粒体功能的影响[J]. 分子植物育种, 2024, 22(4): 1281-1289. [Guo T, Jia XH. Effects of fisetin on apoptosis and mitochondrial function of skeletal muscle cells in exhausted exercise rats[J]. Molecular Plant Breeding, 2024, 22 (4): 1281-1289.] DOI: 10.13271/j.mpb.022.001281.

19.Hou Y, Tang Y, Wang X, et al. Rhodiola Crenulata ameliorates exhaustive exercise-induced fatigue in mice by suppressing mitophagy in skeletal muscle[J]. Exp Ther Med, 2020, 20(4): 3161-3173. DOI: 10.3892/etm.2020.9072.

20.Yeh TS, Lei TH, Barnes MJ, et al. Astragalosides supplementation enhances intrinsic muscle repair capacity following eccentric exercise-induced injury[J]. Nutrients, 2022,14(20): 4339. DOI: 10.3390/nu14204339.

21.王冠锦, 赵暘. 黄芪甲苷对力竭运动致大鼠骨骼肌损伤及细胞凋亡的影响[J]. 云南农业大学学报(自然科学), 2023, 38(1): 80-86. [Wang GJ, Zhao Y.  Effects of astragaloside IV on damage and cell apoptosis of skeletal muscle induced by exhaustive exercise in rats[J]. Journal of Yunnan Agricultural University (Natural Science), 2023, 38(1): 80-86.] https://kns.cnki.net/kcms2/article/abstract?v=WVDzDAe5jxbjtMRygY5JQ-sjgen--E3dst8ENDfPk6sj_ehaDPJmVaDnordapmouyowFWWCYAxzVZt7Q_pD2jBbn3skSeo6m8Ty4G5o6DBmCaVf0708f3lJt62Rm563KWdQMqLosmcDac22we6QDSA==&uniplatform=NZKPT&language=CHS.

22.范龙. 药用植物虎杖的活性物虎杖苷对急性运动过程中骨骼肌炎症反应及氧化应激的影响[J]. 分子植物育种, 2022, 20(6): 2024-2029. [Fan L. Effects of polydatin from polygonum cuspidatum on skeletal muscle inflammation and oxidative stress during acute exercise[J]. Molecular Plant Breeding, 2022, 20(6): 2024-2029.] DOI: 10.13271/j.mpb.020.002024.

23.万利. 黑灵芝多糖提取物对力竭运动小鼠的抗疲劳作用[J]. 基因组学与应用生物学, 2020, 39(9): 4339-4344. [Wan L. Anti-fatigue effect of polysaccharide extract from ganoderma atrum on exhausted mice[J]. Genomics and Applied Biology, 2020, 39(9): 4339-4344.] DOI: 10.13417/j.gab.039.004339.

24.蔡科.香菇多糖对运动性骨骼肌损伤的恢复作用[J].中国食用菌, 2020, 39(8): 68-71. [Cai K. The recovery effect of lentinan on exercise-induced skeletal muscle injury[J]. Edible Fungi of China, 2020, 39(8): 68-71.] DOI: 10.13629/j.cnki.53-1054.2020.08.017.

25.王勇, 侯改霞, 刘艳秋. 草珊瑚粗多糖对运动性骨骼肌损伤(EIMD)的干预效果及机制[J]. 三明学院学报, 2020, 37(2): 1-9. [Wang Y, Hou GX, Liu YQ. Intervention effect and mechanism of polysaccharides of sarcandra glabra on exercise-induced muscle damage[J]. Journal of Sanming University, 2020, 37(2): 1-9.] DOI: 10.14098/j.cn35-1288/z.2020.02.001.

26.Liu R, Li Z, Yu XC, et al. The effects of peanut oligopeptides on exercise-induced fatigue in mice and its underlying mechanism[J]. Nutrients, 2023,15(7):1743. DOI: 10.3390/nu15071743.

27.国春鼎, 杨军霞, 李鹏程. 萝卜硫素通过抑制PINK1/Parkin信号通路介导的线粒体自噬减轻力竭运动诱导的骨骼肌损伤和疲劳[J]. 中国食品卫生杂志, 2022, 34(6): 1158-1165. [Guo CD, Yang JX, Li PC. Reduction effect of sulforaphane on skeletal muscle injury and fatigue induced by exhaustive exercise through inhibiting mitochondrial autophagy mediated by PINK1/Parkin signal pathway[J]. Chinese Journal of Food Hygiene, 2022, 34(6): 1158-1165.] DOI: 10.13590/j.cjfh.2022.06.006.

28.牛衍龙, 曹建民, 王祯, 等. 虾青素对大强度运动致大鼠骨骼肌氧化应激损伤及细胞凋亡的影响[J]. 营养学报, 2021, 43(3): 274-278. [Niu YL, Cao JM, Wang Z, et al. Effects of astaxanthin on oxidative stress injury and apoptosis of skeletal muscle induced by high-intensity exercise in rats[J]. Acta Nutrimenta Sinica, 2021, 43(3): 274-278.] DOI: 10.3969/j.issn.0512-7955.2021.03.012.

29.丁雨. 毛蕊花糖苷对力竭运动的骨骼肌损伤的保护作用[J]. 基因组学与应用生物学, 2020, 39(9): 4289-4294. [Ding Y. Protective effect of verbascoside on skeletal muscle injury induced by exhaustive exercise[J]. Genomics and Applied Biology, 2020, 39(9): 4289-4294.] DOI: 10.13417/j.gab.039.004289.

30.张红波. 植物源性芥子酸对运动性骨骼肌损伤大鼠骨骼肌氧化应激和线粒体功能的影响[J]. 分子植物育种, 2023, 21(24): 8227-8233. [Zhang HB. Effects of  sinapic acid on oxidative stress and mitochondrial function in skeletal muscles of rats with exercise injury[J]. Molecular Plant Breeding, 2023, 21 (24): 8227-8233.] DOI: 10.13271/j.mpb.021.008227.

31.刘东彪. 胡椒活性物质胡椒碱通过调节PI3K/AKT改善大鼠运动性骨骼肌损伤[J]. 分子植物育种, 2024, 22(5): 1654-1662. [Liu DB. Piperine in pepper, improves exercise-induced skeletal muscle damage in rats by regulating the PI3K/AKT pathway[J]. Molecular Plant Breeding, 2024, 22(5): 1654-1662.] DOI: 10.13271/j.mpb.022.001654.

32.刘军舰, 陈帅, 袁红霞, 等. 基于Nrf2信号通路探讨茵陈蒿汤对阻塞性黄疸大鼠肾氧化应激损伤的影响及其作用机制[J].临床肝胆病杂志, 2023, 39(5):  1126-1133. [Liu JJ, Chen S, Yuan HX, et al. Effects of Yinchenhao decoction on renal oxidative stress injury in rats with obstructive jaundice and its mechanism of action based on the nuclear factor erythroid 2-related factor 2 signaling pathway[J]. Journal of Clinical Hepatology, 2023, 39(5): 1126-1133.] DOI: 10.3969/j.issn.1001-5256.2023.05.019.

33.Tsao JP, Bernard JR, Tu TH, et al. Garlic supplementation attenuates cycling exercise-induced oxidative inflammation but fails to improve time trial performance in healthy adults[J]. J Int Soc Sports Nutr, 2023, 20(1): 2206809. DOI: 10.1080/15502783.2023.2206809.

34.Chazaud B. Inflammation and skeletal muscle regeneration: leave it to the macrophages![J]. Trends Immunol, 2020, 41(6): 481-492. DOI: 10.1016/j.it.2020.04.006.

35.Dong Y, Zhang X, Miao R, et al. Branched-chain amino acids promotes the repair of exercise-induced muscle damage via enhancing macrophage polarization[J]. Front Physiol, 2022, 13: 1037090. DOI: 10.3389/fphys.2022.1037090.

36.Bernard C, Zavoriti A, Pucelle Q, et al. Role of macrophages during skeletal muscle regeneration and hypertrophy-Implications for immunomodulatory strategies[J]. Physiol Rep, 2022, 10(19): e15480. DOI: 10.14814/phy2.15480.

37.Romagnoli C, Zonefrati R, Lucattelli E, et al. In vitro effects of PTH (1-84) on human skeletal muscle-derived satellite cells[J]. Biomedicines, 2023,11(4):1017. DOI: 10.3390/biomedicines11041017.

38.杨思梦, 贺庆, 石丽君, 等. Omega-3多不饱和脂肪酸对运动性骨骼肌损伤修复的促进作用及相关机制研究进展[J]. 食品科学, 2023, 44(21): 359-367. [Yang SM, He Q, Shi LJ, et al. Advances in understanding the role of Omega-3 polyunsaturated fatty acids in promoting recovery from exercise-induced muscle injury and its underlying mechanism[J]. Food Science, 2023, 44(21): 359-367.] DOI: 10.7506/spkx1002-6630-20221028-293.

39.Hung CH, Tsai MH, Wang PS, et al. Oxidative stress involves phenotype modulation of morbid soreness symptoms in fibromyalgia[J]. RMD Open, 2023, 9(1): e002741. DOI: 10.1136/rmdopen-2022- 002741.

40.Rahman FA, Quadrilatero J. Mitochondrial network remodeling: an important feature of myogenesis and skeletal muscle regeneration[J]. Cell Mol Life Sci, 2021, 78(10): 4653-4675. DOI: 10.1007/s00018-021-03807-9.

41.梁建庆, 张媛媛, 朱向东, 等. 基于AMPK-FoxO3a自噬轴探讨葛根芩连汤改善2型糖尿病db/db小鼠肝脏脂质异位蓄积的机制[J]. 中国实验方剂学杂志, 2023, 29(18): 1-7. [Liang JQ, Zhang YY, Zhu XD, et al. Mechanism of Gegen Qinliantang in improving ectopic lipid accumulation in liver of db/db mice with type 2 diabetes mellitus by regulating AMPK-FoxO3a autophagy axis[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(18): 1-7.] DOI: 10.13422/j.cnki.syfjx.20231002.

42.Chatzinikita E, Maridaki M, Palikaras K, et al. The role of mitophagy in skeletal muscle damage and regeneration[J]. Cells, 2023, 12(5): 716. DOI: 10.3390/cells12050716.

43.Sekine S. PINK1 import regulation at a crossroad of mitochondrial fate: the molecular mechanisms of PINK1 import[J]. J Biochem, 2020, 167(3): 217-224. DOI: 10.1093/jb/mvz069.

44.张格第, 刘庚鑫, 郭敏, 等. 肾衰方干预PINK1/Parkin介导的线粒体自噬治疗CKD心肌损伤的作用机制研究[J]. 中国实验动物学报, 2023, 31(5): 567-575. [Zhang GD, Liu GX, Guo M, et al. Mechanism of Shenshuai recipe in PINK1/Parkin-mediated mitochondrial autophagy for treatment of CKD myocardial injury[J]. Acta Laboratorium Animalis Scientia Sinica, 2023, 31(5): 567-575.] DOI: 10.3969/j.issn.1005-4847.2023.05.002.

45.Yang L, Dong Z, Li S, et al. ESM1 promotes angiogenesis in colorectal cancer by activating PI3K/Akt/mTOR pathway, thus accelerating tumor progression[J]. Aging (Albany NY), 2023, 15(8): 2920-2936. DOI: 10.18632/aging.204559.

46.Huang YK, Chang KC, Li CY, et al. AKR1B1 represses glioma cell proliferation through p38 MAPK-mediated Bcl-2/BAX/caspase-3 apoptotic signaling pathways[J]. Curr Issues Mol Biol, 2023, 45(4): 3391-3405. DOI: 10.3390/cimb45040222.

47.Fernández-Lázaro D, Mielgo-Ayuso J, Seco Calvo J, et al. Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: a systematic review[J]. Nutrients, 2020,12(2): 501. DOI: 10.3390/nu12020501.

48.Nosrati-Oskouie M, Aghili-Moghaddam NS, Tavakoli-Rouzbehani OM, et al. Curcumin: a dietary phytochemical for boosting exercise performance and recovery[J]. Food Sci Nutr, 2022, 10(11): 3531-3543. DOI: 10.1002/fsn3.2983.

49.Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease[J]. Nat Commun, 2020, 11(1): 102. DOI: 10.1038/s41467-019-13668-3.

50.Liu R, Hao YT, Zhu N, et al. The gastroprotective effect of small molecule oligopeptides isolated from walnut (Juglans regia L.) against ethanol-induced gastric mucosal injury in rats[J]. Nutrients, 2020, 12(4): 1138. DOI: 10.3390/nu12041138.

Popular papers
Last 6 months