Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.8 Detail

Research progress of the olfactory diagnosis analysis process for smart traditional Chinese medicine

Published on Sep. 04, 2024Total Views: 2692 times Total Downloads: 485 times Download Mobile

Author: ZHONG Rui 1 JIANG Yin 2 NI Dan 3 YANG Yulei 1 SHI Yiran 1 NIE Shenyou 3 SHANG Hongcai 4, 5 ZHANG Mei 1, 4

Affiliation: 1. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China 2. Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China 3. Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy, Chongqing Medical University, Chongqing 400016, China 4. Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing University of Chinese Medicine, Beijing 100700, China 5. Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China

Keywords: Smart traditional Chinese medicine Olfactory diagnosis Volatile organic compounds Disease metabolism Exhaled breath collection Enrichment methods Data processing

DOI: 10.12173/j.issn.1004-4337.202405022

Reference: Zhong R, Jiang Y, Ni D, Yang YL, Shi YR, Nie SY, Shang HC, Zhang M. Research progress of the olfactory diagnosis analysis process for smart traditional Chinese medicine[J]. Journal of Mathematical Medicine, 2024, 37(8): 561-574. DOI: 10.12173/j.issn.1004-4337.202405022[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Olfactory diagnosis is an essential part of the “listening and smell diagnosis” in the four diagnostics of traditional Chinese medicine (TCM)—inspection, listening/smell, inquiring, and palpation. It is a method of diagnosing diseases by smelling the odor emitted from the patient’s body, secretions and excretions, as well as the odor of the sick room. In recent years, with the continuous development of medical-engineering integration and interdisciplinarity, TCM has been promoted to gradually move towards precision, efficiency and personalized medicine. This has initiated a new era of smart TCM. At the same time, the development of smart TCM has boosted the study of non-invasive diagnosis by olfactory diagnosis. This paper reviewed the research progress on the analysis process of olfactory diagnosis in smart TCM. The advances in sample collection, analyte enrichment, and data processing for smart TCM olfactory diagnosis were summarized, the metabolic pathways of biomarkers for different diseases in humans were outlined, the challenges faced in the field of olfactory diagnosis of smart TCM were discussed. This will provide a path and basis for the innovative development of olfactory diagnosis of smart TCM in the future. It can also provide a new perspective for promoting the development of objectification, standardization and intelligence of smart TCM olfactory diagnosis.

Full-text
Please download the PDF version to read the full text: download
References

1. 孟骊冲, 刘建和, 李杰, 等. 《中医四诊操作规范第2部分: 闻诊》国家标准解读[J]. 湖南中医药大学学报, 2024, 44(1): 140-143. [Meng LC, Liu JH, Li J, et al. Interpretation of the national standard on operation specifications for four diagnostic methods in Chinese medicine-part 2: listening and smelling[J]. Journal of Hunan University of Chinese Medicine, 2024, 44(1): 140-143.] DOI: 10.3969/j.issn.1674-070X.2024.01.021.

2. 张世祺, 孙宇衡, 咸楠星, 等. 中医四诊客观化与智能化研究进展[J]. 中医药导报, 2023, 29(6): 170-174. [Zhang SQ, Sun YH, Xian NX, et al. Progress of objectivization and intelligent research on the four diagnoses of traditional Chinese medicine[J]. Guilding Journal of Traditianal Chinese Medicine and Pharmacy, 2023, 29(6): 170-174.] DOI: 10.13862/j.cn43-1446/r.2023.06.033.

3. Phillips M. Breath tests in medicine[J]. Sci Am, 1992, 267(1): 74-79. DOI: 10.1038/scientificamerican0792-74.

4. Pauling L, Robinson AB, Teranishi R, et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography[J]. Proc Natl Acad Sci USA, 1971, 68(10): 2374-2376. DOI: 10.1073/PNAS.68.10.2374.

5. 张晓维, 张晓雨, 赵晨, 等. 循证视角下数智中医广义望诊研究及相关装备研制思路[J/OL]. 中国实验方剂学杂志, 1-8. (2024-03-11). [Zhang XW, Zhang XY, Zhao C, et al. Concept of generalized observational diagnosis and related equipment development in digital and intelligent traditional Chinese medicine from an evidence-based perspective[J/OL]. Chinese Journal of Experimental Traditional Medical Formulae, 1-8. (2024-03-11).] https://doi.org/10.13422/j.cnki.syfjx.20240927.

6. 林雪娟, 周福, 吴青海, 等. 基于电子鼻的2型糖尿病常见病位的气味图谱辨识研究[J]. 中华中医药杂志, 2022, 37(7): 3785-3789. [Lin XJ, Zhou F, Wu QH, et al. Research on recognition of odor response patterns of common disease locations of type 2 diabetes mellitus based on electronic nose[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2022, 37(7): 3785-3789.] http://qikan.cqvip.com/Qikan/Article/Detail?id=7107814434.

7. 张玫, 钟瑞, 魏旭煦, 等. 数智中医(闻)嗅诊研究进展[J]. 数理医药学杂志, 2024, 37(1): 2-21. [Zhang M, Zhong R, Wei XX, et al. Research progress on olfactory diagnosis of smart traditional Chinese  medicine[J]. Journal of Mathematical Medicine. 2024, 37(1): 2-21.] DOI: 10.12173/j.issn.1004-4337.202401029.

8. Broza YY, Vishinkin R, Barash O, et al. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation[J]. Chem Soc Rev, 2018, 47(13): 4781-4859. DOI: 10.1039/c8cs00317c.

9. Haick H, Broza YY, Mochalski P, et al. Assessment, origin, and implementation of breath volatile cancer markers[J]. Chem Soc Rev, 2014, 43(5): 1423-1449. DOI: 10.1039/c3cs60329f.

10. Miura Y. Effect of inhibitors on omega- and (omega-1)-hydroxylation of lauric acid by frog liver microsomes[J]. Lipids, 1982, 17(12): 864-869. DOI: 10.1007/BF02534580.

11. Hsieh SC, Wang JH, Lai YC, et al. Production of 1-Dodecanol, 1-Tetradecanol, and 1,12-Dodecanediol through whole-cell biotransformation in escherichia coli[J]. Appl Environ Microbiol, 2018, 84(4): e01806-17. DOI: 10.1128/AEM.01806-17.

12. Pedrosa M, Cancelliere N, Barranco P, et al. Usefulness of exhaled nitric oxide for diagnosing asthma[J]. J Asthma, 2010, 47(7): 817-821. DOI: 10.3109/02770903. 2010.491147.

13. Phillips M, Altorki N, Austin JH, et al. Prediction of lung cancer using volatile biomarkers in breath[J]. Cancer Biomark, 2007, 3(2): 95-109. DOI: 10.3233/cbm-2007-3204.

14. Kalantar-Zadeh K, Berean KJ, Burgell RE, et al. Intestinal gases: influence on gut disorders and the role of dietary manipulations[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(12): 733-747. DOI: 10.1038/s41575-019-0193-z.

15. Chen W, Laiho S, Vaittinen O, et al. Biochemical pathways of breath ammonia (NH3) generation in patients with end-stage renal disease undergoing hemodialysis[J]. J Breath Res, 2016, 10(3): 036011. DOI: 10.1088/1752-7155/10/3/036011.

16. Simenhoff ML, Burke JF, Saukkonen JJ, et al. Biochemical profile of uremic breath[J]. N Engl J Med, 1977, 297(3): 132-135. DOI: 10.1056/NEJM197707212970303.

17. 陈然然, 宋珍华, 吴德华, 等. 人体呼出气的分析研究与临床应用进展[J]. 临床检验杂志, 2021, 39(5): 379-385. [Chen RR, Song ZH, Wu DH, et al. Advances in analytical research and clinical application of human exhaled breath[J]. Chinese Journal of Clinical Laboratory Science, 2021, 39(5): 379-385.] DOI: 10.13602/j.cnki.jcls.2021.05.15.

18. Tang WHW, Tranchito L, Albert C, et al. Exhaled breath analysis using selected ion flow tube mass spectrometry and disease severity in heart failure[J]. Metabolites, 2023, 13(10): 1049. DOI: 10.3390/metabo13101049.4

19. Saasa V, Beukes M, Lemmer Y, et al. Blood ketone bodies and breath acetone analysis and their correlations in type 2 diabetes mellitus[J]. Diagnostics (Basel), 2019, 9(4): 224. DOI: 10.3390/diagnostics9040224.

20. 桂心茹. 胆汁挥发性有机物在胆道系统恶性肿瘤诊断及鉴别诊断的价值研究[D]. 济南: 山东大学, 2024. [Gui XR. Diagnostic and differential diagnostic value of volatile organic compounds in bile in biliary malignant tumors[D]. Jinan: Shandong University, 2024.] DOI: 10.27272/d.cnki.gshdu.2023.003623.

21. 吕伟, 石雯闽, 尹怡, 等. 基于气相色谱质谱研究肺癌呼气特征性挥发有机化合物[J/OL]. 化学试剂, 1-11. (2024-03-22). [Lyu W, Shi WM, Yin Y, et al. Application of gas chromatography-mass spectrometry (GC-MS) on characteristic breath volatile organic compounds of lung cancer[J/OL]. Chemical Reagents, 1-11. (2024-03-22).] https://doi.org/10.13822/j.cnki.hxsj.2023.0812.

22. Hakim M, Broza YY, Barash O, et al. Volatile organic compounds of lung cancer and possible biochemical pathways[J]. Chem Rev, 2012, 112(11): 5949-5966. DOI: 10.1021/cr300174a.

23. 张晶. 基于高分辨气相色谱-质谱联用技术的胃癌呼出气生物标志物研究[D]. 西安: 西北大学, 2021. [Zhang J. Investigation of breath biomarkers for gastic cancer based on high-resolution gas chromatography-mass spectrometry [D]. Xi'an: Northwest University, 2021.] DOI: 10.27405/d.cnki.gxbdu.2021.000288.

24. 唐红霞, 刘志强, 戴霁菲, 等. 鉴定用于诊断和评估急性早幼粒细胞白血病的挥发性有机化合物 [J]. 中国实验血液学杂志, 2020, 28(6): 1848-1852. [Tang  HX, Liu ZQ, Dai JF, et al. Identification of volatile organic compounds used to diagnose and evaluate acute promyelocyte leukemia[J]. Journal of Experimental Hematology, 2020, 28(6): 1848-1852.] DOI: 10.19746/j.cnki.issn1009-2137.2020.06.010.

25. Wang C, Ke C, Wang X, et al. Noninvasive detection of colorectal cancer by analysis of exhaled breath[J]. Anal Bioanal Chem, 2014, 406(19): 4757-4763. DOI: 10.1007/s00216-014-7865-x.

26. Kneepkens CM, Lepage G, Roy CC. The potential of the hydrocarbon breath test as a measure of lipid peroxidation[J]. Free Radic Biol Med, 1994, 17(2): 127-160. DOI: 10.1016/0891-5849(94)90110-4.

27. 葛殿龙. 食管癌患者呼气VOCs及口腔菌群分析研究 [D]. 合肥: 中国科学技术大学, 2023. [Ge DL. Analysis of breath VOCs and oral flora in esophageal cancer patients[D]. Hefei: University of Science and Technology of China, 2023.] DOI: 10.27517/d.cnki.gzkju.2022.000858.

28. Bian Y, Li W, Kremer DM, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation[J]. Nature, 2020, 585(7824): 277-282. DOI: 10.1038/s41586-020-2682-1.

29. Jouyban A, Djouzan D, Mohammadandashti P, et al. Co-liquefaction with acetone and GC analysis of volatile compounds in exhaled breath as lung cancer biomarkers[J]. Bioimpacts, 2017, 7(2): 99-108. DOI: 10.15171/bi.2017.13.

30. Poli D, Goldoni M, Corradi M, et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2010, 878(27): 2643-2651. DOI: 10.1016/j.jchromb.2010.01.022.

31. Fuchs P, Loeseken C, Schubert JK, et al. Breath gas aldehydes as biomarkers of lung cancer[J]. Int J Cancer, 2010, 126(11): 2663-2670. DOI: 10.1002/ijc.24970.

32. Wang L, Chen J, Chen L, et al. 1H-NMR based metabonomic profiling of human esophageal cancer tissue[J]. Mol Cancer, 2013, 12: 25. DOI: 10.1186/1476-4598-12-25.

33. Kanazawa H, Shiraishi S, Hirata K, et al. Imbalance between levels of nitrogen oxides and peroxynitrite inhibitory activity in chronic obstructive pulmonary disease[J]. Thorax, 2003, 58(2): 106-109. DOI: 10.1136/thorax.58.2.106.

34. Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD[J]. Eur Respir J, 2006, 28(1): 219-242. DOI: 10.1183/ 09031936.06. 00053805.

35. Warburg O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314. DOI: 10.1126/science.123.3191.309.

36. Popov TA. Human exhaled breath analysis[J]. Ann Allergy Asthma Immunol, 2011, 106(6): 451-457. DOI: 10.1016/j.anai.2011.02.016.

37. Bos LD, Sterk PJ, Schultz MJ. Volatile metabolites of pathogens: a systematic review[J]. PLoS Pathog, 2013, 9(5): e1003311. DOI: 10.1371/journal.ppat.1003311.

38. Miekisch W, Kischkel S, Sawacki A, et al. Impact of sampling procedures on the results of breath analysis[J]. J Breath Res, 2008, 2(2): 026007. DOI: 10.1088/1752-7155/2/2/026007.

39. Maidodou L, Clarot I, Leemans M, et al. Unraveling the potential of breath and sweat VOC capture devices for human disease detection: a systematic-like review of canine olfaction and GC-MS analysis[J]. Front Chem, 2023, 11: 1282450. DOI: 10.3389/fchem.2023.1282450.

40. Mochalski P, King J, Unterkofler K, et al. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags[J]. Analyst, 2013, 138(5): 1405-1418. DOI: 10.1039/c2an36193k.

41. Beauchamp J, Herbig J, Gutmann R, et al. On the use of Tedlar® bags for breath-gas sampling and analysis[J]. J Breath Res, 2008, 2(4): 046001. DOI: 10.1088/1752-7155/2/4/046001.

42. Kwak J, Fan M, Harshman SW, et al. Evaluation of Bio-VOC sampler for analysis of volatile organic compounds in exhaled breath[J]. Metabolites, 2014, 4(4): 879-888. DOI: 10.3390/metabo4040879.

43. Medical O. ReCIVA® breath sampler[EB/OL]. (2017-01-06) [2024-05-07]. https://www.owlstonemedical.com/products/reciva/.

44. 史晓凤, 潘晓莉, 万滢, 等. 呼出气冷凝液检测概述及其在呼吸系统疾病的应用[J]. 华南国防医学杂志, 2019, 33(1): 67-71. [Shi XF, Pan XL, Wan Y, et al. Overview of the exhaled breath condensate detecting and its application to respiratory diseases[J]. Military Medicine of Joint Logistics, 2019, 33(1): 67-71.] DOI: 10.13730/j.issn.1009-2595.2019.01.019.

45. 徐百川, 李艺婷, 赵虎雷, 等. 呼出气冷凝液生物标志物检测在呼吸系统疾病中的应用现状及前景[J]. 中国全科医学, 2022, 25(2): 139-144. [Xu BC, Li YT, Zhao HL, et al. Application of biomarker detection of exhaled air condensate in respiratory diseases[J]. Chinese General Practice, 2022, 25(2): 139-144.] DOI: 10.12114/j.issn.1007-9572.2021.01.408.

46. Rai D, Pattnaik B, Bangaru S, et al. microRNAs in exhaled breath condensate for diagnosis of lung cancer in a resource-limited setting: a concise review[J]. Breathe (Sheff), 2023, 19(4): 230125. DOI: 10.1183/20734735.0125-2023.

47. Respiratory Research. The standard in exhaled breath condensate (EBC) collection[EB/OL]. (2001-05-17) [2024-05-07]. https://respiratoryresearch.com/.

48. 北京鼎蓝科技有限公司. 呼出气冷凝液采集器/收集器(BioscreenII)[EB/OL]. (2022-12-04) [2024-05-07]. [Beijing Dinglan Technology Co., Ltd. Exhaled breath condensate collector/collector (BioscreenII)[EB/OL]. (2022-12-04) [2024-05-07]. https://www.dingbluetech.com/productinfo/1448657.html.

49. Konstantinidi EM, Lappas AS, Tzortzi AS, et al. Exhaled breath condensate: technical and diagnostic aspects[J]. ScientificWorldJournal, 2015, 2015: 435160. DOI: 10.1155/2015/435160.

50. 时延伟, 张二明, 孙培培, 等. 血清及呼出气冷凝液中白三烯B4和8-异前列腺素的检测在慢性阻塞性肺疾病中的应用价值[J]. 武警后勤学院学报(医学版), 2021, 30(7): 16-18, 25. [Shi YW, Zhang EM, Sun PP, et al. Application value of leukotriene B4 and 8-isoprostane in serum and exhaled breath condensate in chronic obstructive pulmonary disease[J]. Journal of Logistics University of PAP (Medical Sciences), 2021, 30(7): 16-18, 25.] DOI: 10.16548/j.2095-3720.2021.07.003.

51. Freund R, Sauvain JJ, Suarez G, et al. Discriminative potential of exhaled breath condensate biomarkers with respect to chronic obstructive pulmonary disease[J]. J Occup Med Toxicol, 2024, 19(1): 10. DOI: 10.1186/s12995-024-00409-6.

52. Hayes SA, Haefliger S, Harris B, et al. Exhaled breath condensate for lung cancer protein analysis: a review of methods and biomarkers[J]. J Breath Res, 2016, 10(3): 034001. DOI: 10.1088/1752-7155/10/3/034001.

53. 王彤, 曾沛荧, 王明蝶, 等. 基于气相离子迁移谱研究肺隐球病患者呼出气中特征挥发性有机物[J]. 分析测试学报, 2020, 39(4): 467-472. [Wang T, Zeng PY, Wang MD, et al. Investigation on characteristic VOCs in exhaled breath of patients suffering pulmonary cryptococcal disease by gas chromatography-ion mobility spectrometry[J]. Journal of Instrumental Analysis, 2020, 39(4): 467-472.] DOI: 10.3969/j.issn.1004-4957.2020.04.006.

54. 谢少华, 戴维, 刘明心, 等. 呼出气中挥发性有机化合物对<50岁人群肺结节良恶性的预测价值[J]. 中国胸心血管外科临床杂志, 2020, 27(6): 675-680. [Xie  SH, Dai W, Liu MX, et al. Predictive value of volatile organic compounds in exhaled breath on pulmonary nodule in people aged less than 50 years[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2020, 27(6): 675-680.] DOI: 10.7507/1007-4848.202002125.

55. Woollam M, Siegel AP, Grocki P, et al. Preliminary method for profiling volatile organic compounds in breath that correlate with pulmonary function and other clinical traits of subjects diagnosed with cystic fibrosis: a pilot study[J]. J Breath Res, 2022, 16(2). DOI: 10.1088/1752-7163/ac522f.

56. Yi Z, Dong S, Wang X, et al. Exploratory study on noninvasive biomarker of silicosis in exhaled breath by solid-phase microextraction-gas chromatography-mass spectrometry analysis[J]. Int Arch Occup Environ Health, 2023, 96(6): 857-868. DOI: 10.1007/s00420-023-01971-y.

57. Koureas M, Kirgou P, Amoutzias G, et al. Target analysis of volatile organic compounds in exhaled breath for lung cancer discrimination from other pulmonary diseases and healthy persons[J]. Metabolites, 2020, 10(8): 317. DOI: 10.3390/metabo10080317.

58. van Oort PM, Nijsen TM, White IR, et al. Untargeted molecular analysis of exhaled breath as a diagnostic test for ventilator-associated lower respiratory tract infections (BreathDx)[J]. Thorax, 2022, 77(1): 79-81. DOI: 10.1136/thoraxjnl-2021-217362.

59. Sukaram T, Tansawat R, Phathong C, et al. Volatile organic compounds for diagnosis of early hepatocellular carcinoma in at-risk patients[J]. Clin Chim Acta, 2024, 556: 117831. DOI: 10.1016/j.cca.2024.117831.

60. Ibrahim W, Wilde MJ, Cordell RL, et al. Visualization of exhaled breath metabolites reveals distinct diagnostic signatures for acute cardiorespiratory breathlessness[J]. Sci Transl Med, 2022, 14(671): eabl5849. DOI: 10.1126/scitranslmed.abl5849.

61. Seong SH, Kim HS, Lee YM, et al. Exploration of potential breath biomarkers of chronic kidney disease through thermal desorption-gas chromatography/mass spectrometry[J]. Metabolites, 2023, 13(7): 837. DOI: 10.3390/metabo13070837.

62. Śmiełowska M, Ligor T, Kupczyk W, et al. Screening for volatile biomarkers of colorectal cancer by analyzing breath and fecal samples using thermal desorption combined with GC-MS (TD-GC-MS)[J]. J Breath Res, 2023, 17(4). DOI: 10.1088/1752-7163/ace46e.

63. Vas G, Vékey K. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis[J]. J Mass Spectrom, 2004, 39(3): 233-254. DOI: 10.1002/jms.606.

64. Żuchowska K, Filipiak W. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: current state of the art[J]. J Pharm Anal, 2024, 14(4): 100898. DOI: 10.1016/j.jpha.2023.11.005.

65. Ingle RG, Zeng S, Jiang H, et al. Current developments of bioanalytical sample preparation techniques in pharmaceuticals[J]. J Pharm Anal, 2022, 12(4): 517-529. DOI: 10.1016/j.jpha.2022.03.001.

66. Koehler T, Ackermann I, Brecht D, et al. Analysis of volatile metabolites from in vitro biofilms of Pseudomonas aeruginosa with thin-film microextraction by thermal desorption gas chromatography-mass spectrometry[J]. Anal Bioanal Chem, 2020, 412(12): 2881-2892. DOI: 10.1007/s00216-020-02529-4.

67. Locatelli M, Tartaglia A, Ulusoy HI, et al. Fabric-phase sorptive membrane array as a noninvasive in vivo sampling device for human exposure to different compounds[J]. Anal Chem, 2021, 93(4): 1957-1961. DOI: 10.1021/acs.analchem.0c04663.

68. Yuan ZC, Li W, Wu L, et al. Solid-phase microextraction fiber in face mask for in vivo sampling and direct mass spectrometry analysis of exhaled breath aerosol[J]. Anal Chem, 2020, 92(17): 11543-11547. DOI: 10.1021/acs.analchem.0c02118.

69. Li X. Application of solid-phase microextraction in gas sampling[M]. Solid Phase Microextraction, 2017: 63-73.

70. 徐刚, 史茗歌, 吴明红, 等. 固相微萃取的原理及应用 [J]. 上海大学学报(自然科学版), 2013, 19(4): 368-373. [Xu G, Shi MG, Wu MH, et al. Principle and application of solid phase micro-extraction[J]. Journal of Shanghai University (Natural Science Edition), 2013, 19(4): 368-373.] DOI: 10.3969/j.issn.1007-2861.2013.04.008.

71. 马梦园. 金属有机骨架用于疾病呼出气及水环境样品中VOCs的固相微萃取[D]. 保定: 河北大学, 2021. [Ma MY. Metal-organic framework for solid-phase microextraction of VOCs in exhaled breath of diseases and water samples[D]. Baoding: Hebei University, 2021.] DOI: 10.27103/d.cnki.ghebu.2021.000788.

72. Buszewski B, Kesy M, Ligor T, et al. Human exhaled air analytics: biomarkers of diseases[J]. Biomed Chromatogr, 2007, 21(6): 553-566. DOI: 10.1002/bmc.835.

73. Spinhirne JP, Koziel JA, Chirase NK. A device for non-invasive on-site sampling of cattle breath with solid-phase microextraction[J]. Biosystems Engineering, 2003, 84(2): 239-246. DOI: 10.1016/S1537-5110(02)00240-4.

74. Mills GA, Walker V. Headspace solid-phase microextraction procedures for gas chromatographic analysis of biological fluids and materials[J]. J Chromatogr A, 2000, 902(1): 267-287. DOI: 10.1016/s0021-9673(00)00767-6.

75. Deng C, Zhang X, Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2004, 808(2): 269-277. DOI: 10.1016/j.jchromb.2004.05.015.

76. Schulz E, Woollam M, Grocki P, et al. Methods to detect volatile organic compounds for breath biopsy using solid-phase microextraction and gas chromatography-mass spectrometry[J]. Molecules, 2023, 28(11): 4533. DOI: 10.3390/molecules28114533.

77. Salami M, Talebpour Z, Alizadeh R. Fabrication of a new SPME fiber based on Polyacrylic acid/ MIL-88(Fe)-NH2 composite as a self-healing coating for the analysis of breast cancer biomarkers in the urine sample[J]. J Pharm Biomed Anal, 2022, 219: 114902. DOI: 10.1016/j.jpba.2022.114902.

78. 胡海明, 朱衣兴, 常德. 呼出气分析在心肺疾病诊断中的临床应用进展[J]. 中国循证心血管医学杂志, 2023, 15(7): 885-887, 894. [Hu HM, Zhu YX, Chang D. Advances in the clinical application of exhaled breath analysis in the diagnosis of cardiopulmonary diseases[J]. Chinese Journal of Evidence-based Cardiovascular Medicine, 2023, 15(7): 885-887, 894.] DOI: 10.3969/j.issn.1674-4055.2023.07.30.

79. 马宁宁, 陈燕芬, 钟怀宁, 等. 食品接触材料中挥发性气味物质分析技术的研究进展[J]. 食品安全质量检测学报, 2020, 11(4): 1005-1013. [Ma NN, Chen YF, Zhong HN, et al. Research progress on analysis technology of volatile odorant substances in food contact materials[J]. Journal of Food Safety & Quality, 2020, 11(4): 1005-1013.] DOI: 10.19812/j.cnki.jfsq11-5956/ts.2020.04.001.

80. Dettmer K, Engewald W. Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds[J]. Anal Bioanal Chem, 2002, 373(6): 490-500. DOI: 10.1007/s00216-002-1352-5.

81. Jung AE, Davidson CN, Land CJ, et al. Impact of thermal desorption tubes on the variability of exhaled breath data[J]. J Breath Res, 2023, 18(1). DOI: 10.1088/1752-7163/ad15a3.

82. 左书瑞, 陈国通, 毛琼玲, 等. 热脱附技术在化学分析中应用研究进展[J]. 广东化工, 2023, 50(20): 49-51, 18. [Zuo SR, Chen GT, Mao QL, et al. Progress in the application of thermal desorption technology in chemical analysis[J]. Guangdong Chemical Industry, 2023, 50(20): 49-51, 18.] DOI: 10.3969/j.issn.1007-1865.2023.20.016.

83. Wilkinson M, White IR, Goodacre R, et al. Effects of high relative humidity and dry purging on VOCs obtained during breath sampling on common sorbent tubes[J]. J Breath Res, 2020, 14(4): 046006. DOI: 10.1088/1752-7163/ab7e17.

84. Gallego E, Roca FJ, Perales JF, et al. Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs)[J]. Talanta, 2010, 81(3): 916-924. DOI: 10.1016/j.talanta.2010.01.037.

85. Deo RC. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1930. DOI: 10.1161/CIRCULATIONAHA.115.001593.

86. Hsieh WW. Evolution of machine learning in environmental science-a perspective[J]. Environmental Data Science, 2022, 1: e3. https://doi.org/10.1017/eds.2022.2.

87. 徐淋鑫. 基于快速气相色谱技术的慢性胃炎与消化性溃疡呼出气诊断模型研究[D]. 杭州: 浙江大学, 2023. [Xu LX. Diagnosis models of chronic gastritis and peptic ulcer based on rapid gas chromatography of exhalations[D]. Hangzhou: Zhejiang University, 2023.] DOI: 10.27461/d.cnki.gzjdx.2022.002018.

88. Zhang Y, Wang Y. Recent trends of machine learning applied to multi-source data of medicinal plants[J]. J Pharm Anal, 2023, 13(12): 1388-1407. DOI: 10.1016/j.jpha.2023.07.012.

89. Nkengfack LCD, Tchiotsop D, Atangana R, et al. A comparison study of polynomial-based PCA, KPCA, LDA and GDA feature extraction methods for epileptic and eye states EEG signals detection using kernel machines[J]. Informatics in Medicine Unlocked, 2021, 26: 100721. DOI: 10.1016/J.IMU.2021.100721.

90. Robotti E, Marengo E. Chemometric multivariate tools for candidate biomarker identification: LDA, PLS-DA, SIMCA, ranking-PCA[J]. Methods Mol Biol, 2016, 1384: 237-267. DOI: 10.1007/978-1-4939-3255-9_14.

91. 雷炳业, 潘嘉瑜, 吴逢春,等. 基于机器学习的神经精神疾病辅助诊断研究进展[J]. 中国医学物理学杂志, 2020, 37(2): 257-264. [Lei BY, Pan JY, Wu FC, et al. Advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning[J]. Chinese Journal of Medical Physics, 2020, 37(2): 257-264.] DOI: 10.3969/j.issn.1005-202X.2020.02.022.

92. Zhang YQ, Guo C, Wang BS, et al. A novel ensemble method for k-nearest neighbor[J]. Pattern Recognition, 2019, 85: 13-25. DOI: 10.1016/j.patcog.2018.08.003.

93. Saeed U, Shah SY, Ahmad J, et al. Machine learning empowered COVID-19 patient monitoring using non-contact sensing: an extensive review[J]. J Pharm Anal, 2022, 12(2): 193-204. DOI: 10.1016/j.jpha.2021.12.006.

94. Nicolle A, Deng S, Ihme M, et al. Mixtures recomposition by neural nets: a multidisciplinary overview[J]. J Chem Inf Model, 2024, 64(3): 597-620. DOI: 10.1021/acs.jcim.3c01633.

95. Zeng X, Li SJ, Lv SQ, et al. A comprehensive review of the recent advances on predicting drug-target affinity based on deep learning[J]. Front Pharmacol, 2024, 15: 1375522. DOI: 10.3389/fphar.2024.1375522.

96. Ahmad S, Raza K. An extensive review on lung cancer therapeutics using machine learning techniques: state-of-the-art and perspectives[J]. J Drug Target, 2024, 6: 1-12. DOI: 10.1080/1061186X.2024.2347358.

97. 岳静文, 郝丽俊. 呼气信号三分类癌症检测模型的设计及评价[J]. 生物医学工程学进展, 2024, 45(1): 48-53. [Yue JW, Hao LJ. Design and evaluation of a triple classification cancer detection model for breath signals[J]. Progress in Biomedical Engineering, 2024, 45(1): 48-53.] DOI: 10.3969/j.issn.1674-1242.2024.01.008.

98. 陈可. 电子鼻在肺癌筛查中的应用及算法研究[D]. 重庆: 重庆大学, 2021. [Chen K. Application and algorithmic research of electronic nose in lung cancer screening[D]. Chongqing: Chongqing University, 2021.] DOI: 10.27670/d.cnki.gcqdu.2019.000693.

99. Altomare DF, Di Lena M, Porcelli F, et al. Exhaled volatile organic compounds identify patients with colorectal cancer[J]. Br J Surg, 2013, 100(1): 144-150. DOI: 10.1002/bjs.8942.

100. Liang J, Pang T, Liu W, et al. Comparison of six machine learning methods for differentiating benign and malignant thyroid nodules using ultrasonographic characteristics[J]. BMC Med Imaging, 2023, 23(1): 154. DOI: 10.1186/s12880-023-01117-z.

101. 王仲霞, 桑秀秀, 余思邈, 等. 乙型肝炎失代偿期肝硬化及慢性肝衰竭患者的呼出气代谢组学差异性分析[J]. 世界科学技术-中医药现代化, 2019, 21(10): 2032-2040. [Wang ZX, Sang XX, Yu SM, et al. Analysis of exhaled gas metabolites in patients with decompensated cirrhosis and chronic liver failure of hepatitis B[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2019, 21(10): 2032-2040.] DOI: 10.11842/wst.20190726003.

Popular papers
Last 6 months