Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.8 Detail

The role and mechanism of macrophages in atherosclerosis

Published on Sep. 04, 2024Total Views: 229 times Total Downloads: 141 times Download Mobile

Author: ZHOU Yuheng 1 DONG Xinnian 2 LI Yuetong 1 ZHU Dingli 1 LI Lizhi 1 LI Zihao 3 JIANG Zhicheng 4

Affiliation: 1. Faculty of Medicine, Nantong University Xinglin College, Nantong 226236, Jiangsu Province, China 2. Department of Clinical Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu Province, China 3. Department of Rehabilitation Medicine, Suqian First Hospital Affiliated to Nanjing Medical University, Suqian 223800, Jiangsu Province, China 4. Medical School, Nantong University, Nantong 226001, Jiangsu Province, China

Keywords: Atherosclerosis Macrophage Inflammation Polarization Target

DOI: 10.12173/j.issn.1004-4337.202405049

Reference: Zhou YH, Dong XN, Li YT, Zhu DL, Li LZ, Li ZH, Jiang ZC. The role and mechanism of macrophages in atherosclerosis[J]. Journal of Mathematical Medicine, 2024, 37(8): 575-583. DOI: 10.12173/j.issn.1004-4337.202405049[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Atherosclerosis (AS) is a chronic inflammatory disease, which is the main pathological basis of many cardiovascular and cerebrovascular diseases, and one of the main causes of death. Macrophages are the main immune cells in AS plaques and are closely related to the progression of the disease. Their biological characteristics, phenotype proportion, and secreted cytokines determine the stability, size, and lesion progression of AS plaques. Therefore, macrophages are considered a powerful target for treating AS. This article elaborates on the polarization characteristics of macrophages, the potential molecular mechanisms of macrophage regulation of AS, and the impact of targeted regulation of macrophage polarization on AS, in order to provide theoretical basis for further research on the molecular mechanisms of AS pathogenesis and improve its therapeutic effect.

Full-text
Please download the PDF version to read the full text: download
References

1.Roger VL, Sidney S, Fairchild AL, et al. Recommendations for cardiovascular health and disease surveillance for 2030 and beyond: a policy statement from the American Heart Association[J]. Circulation, 2020, 141(9): e104-e119. DOI: 10.1161/CIR.0000000000000756.

2.Liu X, Guo JW, Lin XC, et al. Macrophage NFATc3 prevents foam cell formation and atherosclerosis: evidence and mechanisms[J]. Eur Heart J, 2021, 42(47): 4847-4861. DOI: 10.1093/eurheartj/ehab660.

3.刘梦华, 程序, 赵梦竹, 等. 血府逐瘀胶囊对动脉粥样硬化小鼠巨噬细胞极化的影响[J]. 中国实验方剂学杂志, 2024, 30(12): 54-61. [Liu MH, Cheng X, Zhao MZ, et al. Effect of Xuefu Zhuyu Capsules on polarization of macrophages in mice with atherosclerosis[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2024, 30 (12): 54-61.] DOI: 10.13422/j.cnki.syfjx. 20240714.

4.Weivoda MM, Bradley EW. Macrophages and bone remodeling[J]. J Bone Miner Res, 2023, 38(3): 359-369. DOI: 10.1002/jbmr.4773.

5.Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J]. Front Immunol, 2019, 10: 1084. DOI: 10.3389/fimmu.2019.01084.

6.Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. DOI: 10.1016/j.ejphar.2020.173090.

7.Canfrán-Duque A, Rotllan N, Zhang X, et al. Macrophage-derived 25-hydroxycholesterol promotes vascular inflammation, atherogenesis, and lesion remodeling[J]. Circulation, 2023, 147(5): 388-408. DOI: 10.1161/CIRCULATIONAHA.122.059062.

8.Jinnouchi H, Guo L, Sakamoto A, et al. Diversity of macrophage phenotypes and responses in atherosclerosis[J]. Cell Mol Life Sci, 2020, 77(10): 1919-1932. DOI: 10.1007/s00018-019-03371-3.

9.Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals[J]. Nature, 2010, 464(7293): 1357-1361. DOI: 10.1038/nature08938.

10.Luo X, Zhou X. CircRNA-PTPRA knockdown inhibits atherosclerosis progression by repressing ox-LDL-induced endothelial cell injury via sponging of miR-671-5p[J]. Biochem Genet, 2023, 61(1): 187-201. DOI: 10.1007/s10528-022-10256-x.

11.Bosmans LA, Bosch L, Kusters PJH, et al. The CD40-CD40L dyad as immunotherapeutic target in cardiovascular disease[J]. J Cardiovasc Transl Res, 2021, 14(1): 13-22. DOI: 10.1007/s12265-020-09994-3.

12.Feng X, Du M, Li S, et al. Hydroxysafflor yellow A regulates lymphangiogenesis and inflammation via the inhibition of PI3K on regulating AKT/mTOR and NF-κB pathway in macrophages to reduce atherosclerosis in ApoE-/-mice[J]. Phytomedicine, 2023, 112: 154684. DOI: 10.1016/j.phymed.2023.154684.

13.Djuricic I, Calder PC. Omega-3 (n-3) fatty acid–statin interaction: evidence for a novel therapeutic strategy for atherosclerotic cardiovascular disease[J]. Nutrients, 2024, 16(7): 962. DOI: 10.3390/nu16070962.

14.Kharazmi-Khorassani J, Ghafarian Zirak R, Ghazizadeh H, et al. The role of serum monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) in cardiovascular disease risk[J]. Acta Biomed, 2021, 92(2): e2021049. DOI: 10.23750/abm.v92i2.9235.

15.Poznyak AV, Nikiforov NG, Starodubova AV, et al. Macrophages and foam cells: brief overview of their role, linkage, and targeting potential in atherosclerosis[J]. Biomedicines, 2021, 9(9): 1221. DOI: 10.3390/biomedicines9091221.

16.宋玮, 张钟艺, 王楷, 等. 茱萸丸通过PPARγ/NF-κB信号通路促进巨噬细胞M2型极化防治动脉粥样硬化[J]. 中国中药杂志, 2024, 49(1): 243-250. [Song W, Zhang ZY, Wang K, et al.  Zhuyu Pills promote polarization of macrophages  toward M2 phenotype  to prevent atherosclerosis via PPARγ/NF-κB signaling pathway[J]. China Journal of Chinese Materia Medica, 2024, 49 (1): 243-250.] DOI: 10.19540/j.cnki.cjcmm.20230823.501.

17.Liu QL, Liu ZX, Wu D, et al. Relationship between polyunsaturated fatty acid metabolism and atherosclerosis[J]. Rev Cardiovasc Med, 2024, 25(4): 142. DOI: 10.31083/j.rcm2504142.

18.Quan YZ, Ma A, Ren CQ, et al. Ganoderic acids alleviate atherosclerosis by inhibiting macrophage M1 polarization via TLR4/MyD88/NF-κB signaling pathway[J]. Atherosclerosis, 2024, 391: 117478. DOI: 10.1016/j.atherosclerosis.2024.117478.

19.Chen Y, Waqar AB, Nishijima K, et al. Macrophage‐derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits[J]. J Cell Mol Med, 2020, 24(7): 4261-4274. DOI: 10.1111/jcmm.15087.

20.Cai Y, Wen J, Ma S, et al. Huang-Lian-Jie-Du decoction attenuates atherosclerosis and increases plaque stability in high-fat diet-induced ApoE-/-mice by inhibiting M1 macrophage polarization and promoting M2 macrophage polarization[J]. Front Physiol, 2021, 12: 666449. DOI: 10.3389/fphys.2021.666449.

21.Luo G, Xiang L, Xiao L. Quercetin alleviates atherosclerosis by suppressing oxidized LDL-induced senescence in plaque macrophage via inhibiting the p38MAPK/p16 pathway[J]. J Nutr Biochem, 2023, 116: 109314. DOI: 10.1016/j.jnutbio.2023.109314.

22.Gong M, Zhuo X, Ma A. STAT6 upregulation promotes M2 macrophage polarization to suppress atherosclerosis[J]. Med Sci Monit Basic Res, 2017, 23: 240-249. DOI: 10.12659/msmbr.904014.

23.Gao M, Dong L, Yang Y, et al. The anti-atherosclerotic effect of Paeonol against the lipid accumulation in macrophage-derived foam cells by inhibiting ferroptosis via the SIRT1/NRF2/GPX4 signaling pathway[J]. Biochem Biophys Res Commun, 2024, 708: 149788. DOI: 10.1016/j.bbrc.2024.149788.

24.Luo Y, Lu S, Gao Y, et al. Araloside C attenuates atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy[J]. Aging (Albany NY), 2020, 12(2): 1704-1724. DOI: 10.18632/aging.102708.

25.Ma J, Chen L, Zhu X, et al. Mesenchymal stem cell-derived exosomal miR-21a-5p promotes M2 macrophage polarization and reduces macrophage infiltration to attenuate atherosclerosis[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(9): 1227-1236. DOI: 10.1093/abbs/gmab102.

26.In Het Panhuis W, Schönke M, Modder M, et al. Time-restricted feeding attenuates hypercholesterolaemia and atherosclerosis development during circadian disturbance in APOE∗3-Leiden.CETP mice[J]. EBioMedicine, 2023, 93: 104680. DOI: 10.1016/j.ebiom.2023.104680.

27.Liu Y, Wang X, Pang J, et al. Attenuation of atherosclerosis by protocatechuic acid via inhibition of M1 and promotion of M2 macrophage polarization[J]. J Agric Food Chem, 2019, 67(3): 807-818. DOI: 10.1021/acs.jafc.8b05719.

28.Abd Rahim IN, Mohd Kasim NA, Omar E, et al. Safety evaluation of saffron extracts in early and established atherosclerotic New Zealand white rabbits[J]. PLoS One, 2024, 19(1): e0295212. DOI: 10.1371/journal.pone. 0295212.

29.Wei LL, Ma N, Wu KY, et al. Protective role of C3aR (C3a anaphylatoxin receptor) against atherosclerosis in atherosclerosis-prone mice[J]. Arterioscler Thromb Vasc Biol, 2020, 40(9): 2070-2083. DOI: 10.1161/ATVBAHA. 120.314150.

30.Li Z, Martin M, Zhang J, et al. Krüppel-like factor 4 regulation of cholesterol-25-hydroxylase and liver X receptor mitigates atherosclerosis susceptibility[J]. Circulation, 2017, 136(14): 1315-1330. DOI: 10.1161/CIRCULATIONAHA.117.027462.

31.van Ingen E, Foks AC, Woudenberg T, et al. Inhibition of microRNA-494-3p activates Wnt signaling and reduces proinflammatory macrophage polarization in atherosclerosis[J]. Mol Ther Nucleic Acids, 2021, 26: 1228-1239. DOI: 10.1016/j.omtn.2021.10.027.

32.Hu G, Yuan Z, Wang J. Autophagy inhibition and ferroptosis activation during atherosclerosis: hypoxia-inducible factor 1α inhibitor PX-478 alleviates atherosclerosis by inducing autophagy and suppressing ferroptosis in macrophages[J]. Biomed Pharmacother, 2023, 161: 114333. DOI: 10.1016/j.biopha.2023.114333.

33.He P, Wang H, Cheng S, et al. Geniposide ameliorates atherosclerosis by regulating macrophage polarization via perivascular adipocyte-derived CXCL14[J]. J Ethnopharmacol, 2023, 314: 116532. DOI: 10.1016/j.jep.2023.116532.

34.李斯锦, 陶丽宇, 王怡茹, 等. 冠心康通过激活ERK5/Nrf2通路对ox-LDL和LPS诱导的巨噬细胞铁死亡的影响[J]. 时珍国医国药, 2024, 35(1): 12-17. [Li SJ, Tao LY, Wang YR, et al. Effect of Guanxinkang on ox-LDL and LPS induced ferroptosis in macrophages by activating ERK5 /Nrf2 pathway[J]. Lishizhen Medicine and Materia Medica Research, 2024, 35(1): 12-17.] DOI: 10.3969/j.issn.1008-0805.2024.01.03.

35.王建茹, 张一凡, 毛美娇, 等. 冠心康含药血清通过活化ERK5对ox-LDL负载的巨噬细胞胞葬作用的影响 [J]. 暨南大学学报(自然科学与医学版), 2020, 41(4): 289-302. [Wang JR, Zhang YF, Mao MJ, et al.  Effect of Guanxinkang medicated serum on efferocytosis of ox-LDL-loaded macrophages by activating ERK5 in vitro[J]. Journal of Jinan University (Natural Science & Medicine Edition), 2020, 41(4): 289-302.] DOI: 10.11778/J. jdxb.2020.04.001.

36.Kane J, Jansen M, Hendrix S, et al. Anti-Galectin-2 antibody treatment reduces atherosclerotic plaque size and alters macrophage polarity[J]. Thromb Haemost, 2022, 122(6): 1047-1057. DOI: 10.1055/a-1711-1055.

37.Jin Y, Liu Y, Xu L, et al. Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis[J]. Cell Death Dis, 2022, 13(5): 512. DOI: 10.1038/s41419-022-04966-8.

38.Ma Y, Zhang Y, Qiu C, et al. Rivaroxaban suppresses atherosclerosis by inhibiting FXa-induced macrophage M1 polarization-mediated phenotypic conversion of vascular smooth muscle cells[J]. Front Cardiovasc Med, 2021, 8: 739212. DOI: 10.3389/fcvm.2021.739212.

39.Zhang X, Wang Z, Li X, et al. Polydatin protects against atherosclerosis by activating autophagy and inhibiting pyroptosis mediated by the NLRP3 inflammasome[J]. J Ethnopharmacol, 2023, 309: 116304. DOI: 10.1016/j.jep.2023.116304.

40.Peng R, Ji H, Jin L, et al. Macrophage-based therapies for atherosclerosis management[J]. J Immunol Res, 2020, 2020: 8131754. DOI: 10.1155/2020/8131754.

41.赵兴艳, 汤正珍, 岳春, 等. 橙皮苷调控Jagged1/Notch1通路对巨噬细胞极化及细支气管炎小鼠肺损伤的影响[J]. 中国医学科学院学报, 2022, 44(5): 777-784. [Zhao XY, Tang ZZ, Yue C, et al. Hesperidin regulates Jagged1/Notch1 pathway to promote macrophage polarization and alleviate lung injury in mice with bronchiolitis[J]. Acta Academiae Medicinae Sinicae, 2022, 44(5): 777-784.] DOI: 10.3881/j.issn.1000-503X.14888.

42.Perera B, Wu Y, Nguyen NT, et al. Advances in drug delivery to atherosclerosis: investigating the efficiency of different nanomaterials employed for different type of drugs[J]. Mater Today Bio, 2023, 22: 100767. DOI: 10.1016/j.mtbio.2023.100767.

43.Togami K, Zhan X, Ishizawa K, et al. Development of LOX-1 antibody modified immuno- liposomes as drug carriers to macrophages in atherosclerotic lesions[J]. Pharmazie, 2023, 78(8): 113-116. DOI: 10.1691/ph.2023.3004.

44.Chen Y, Wang H, Pan J, et al. Macrophage-targeted ultrasound nanobubbles for highly efficient sonodynamic therapy of atherosclerotic plaques by modulating M1-to-M2 polarization[J]. Atherosclerosis, 2024, 389: 117423. DOI: 10.1016/j.atherosclerosis.2023.117423.

45.Jiang C, Qi Z, He W, et al. Dynamically enhancing plaque targeting via a positive feedback loop using multifunctional biomimetic nanoparticles for plaque regression[J]. J Control Release, 2019, 308: 71-85. DOI: 10.1016/j.jconrel.2019.07.007.

46.Wang J, Kang YX, Pan W, et al. Enhancement of anti-inflammatory activity of curcumin using phosphatidylserine-containing nanoparticles in cultured macrophages[J]. Int J Mol Sci, 2016, 17(5): 969. DOI: 10.3390/ijms17060969.

Popular papers
Last 6 months