Severe trauma is a common acute and severe disease in clinic. Its pathological process is complicated, usually accompanied by oxidative stress, inflammation and other injuries, which seriously threaten the life and health of patients. In the face of the complex pathological changes caused by trauma, cells quickly activate a variety of endogenous protective mechanisms to adapt to environmental changes and maintain cell homeostasis. In recent years, important progress has been made in the study of endogenous cellular protection mechanisms after severe trauma, especially the role and regulation of heat shock response, autophagy, antioxidant response and DNA repair mechanism after trauma. This article reviewed the molecular regulation of these mechanisms, aiming to elucidate their potential role in reducing tissue injury, promoting repair and improving clinical prognosis, which provided new ideas and perspectives for post-traumatic cell stress response.
1.Cyran AM, Zhitkovich A. HIF1, HSF1, and NRF2: oxidant-responsive trio raising cellular defenses and engaging immune system[J]. Chem Res Toxicol, 2022, 35(10): 1690-1700. DOI: 10.1021/acs.chemrestox.2c00131.
2.Suen AO, Chen F, Wang S, et al. Extracellular RNA sensing mediates inflammation and organ injury in a murine model of polytrauma[J]. J Immunol, 2023, 210(12): 1990-2000. DOI: 10.4049/jimmunol.2300103.
3.Chen D, Zhang C, Luo J, et al. Activated autophagy of innate immune cells during the early stages of major trauma[J]. Front Immunol, 2023, 13: 1090358. DOI: 10.3389/fimmu.2022. 1090358.
4.Wang Y, Su M, Chen Y, et al. Research progress on the role and mechanism of DNA damage repair in germ cell development[J]. Front Endocrinol (Lausanne), 2023, 14: 1234280. DOI: 10.3389/fendo.2023.1234280.
5.Jaganjac M, Milkovic L, Zarkovic N, et al. Oxidative stress and regeneration[J]. Free Radic Biol Med, 2022, 181: 154-165. DOI: 10.1016/j.freeradbiomed.2022.02.004.
6.Lacourt A, Amadéo B, Gramond C, et al. ETIOSARC study: environmental aetiology of sarcomas from a French prospective multicentric population-based case-control study-study protocol[J]. BMJ Open, 2019, 9(6): e030013. DOI: 10.1136/bmjopen-2019-030013.
7.Fesharaki-Zadeh A. Oxidative stress in traumatic brain injury[J]. Int J Mol Sci, 2022, 23(21): 13000. DOI: 10.3390/ijms232113000.
8.Ashok A, Andrabi SS, Mansoor S, et al. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: role of nanoparticle-based drug delivery systems in clinical translation[J]. Antioxidants (Basel), 2022, 11(2): 408. DOI: 10.3390/antiox11020408.
9.Wu AG, Yong YY, Pan YR, et al. Targeting Nrf2-mediated oxidative stress response in traumatic brain injury: therapeutic perspectives of phytochemicals[J]. Oxid Med Cell Longev, 2022, 2022: 1015791. DOI: 10.1155/2022/1015791.
10.Liu J, Liao H, Chen Y, et al. Resveratrol inhibits oxidative stress and regulates M1/M2-type polarization of microglia via mediation of the Nrf2/Shh signaling cascade after OGD/R injury in vitro[J]. J Pers Med, 2022, 12(12): 2087. DOI: 10.3390/jpm12122087.
11.Xu M, Li L, Liu H, et al. Rutaecarpine attenuates oxidative stress-induced traumatic brain injury and reduces secondary injury via the PGK1/KEAP1/NRF2 signaling pathway[J]. Front Pharmacol, 2022, 13: 807125. DOI: 10.3389/fphar.2022.807125.
12.Abdul-Muneer PM. Nrf2 as a potential therapeutic target for traumatic brain injury[J]. J Integr Neurosci, 2023, 22(4): 81. DOI: 10.31083/j.jin2204081.
13.Zamanian MY, Soltani A, Khodarahmi Z, et al. Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: an overview and update on new developments[J]. Fundam Clin Pharmacol, 2023, 37(6): 1050-1064. DOI: 10.1111/fcp.12926.
14.Ahmad R, Khan A, Rehman IU, et al. Lupeol treatment attenuates activation of glial cells and oxidative-stress-mediated neuropathology in mouse model of traumatic brain injury[J]. Int J Mol Sci, 2022, 23(11): 6086. DOI: 10.3390/ijms23116086.
15.Xie W, Deng L, Lin M, et al. Sirtuin1 mediates the protective effects of echinacoside against sepsis-induced acute lung injury via regulating the NOX4-Nrf2 axis[J]. Antioxidants (Basel), 2023, 12(11): 1925. DOI: 10.3390/antiox12111925.
16.Rutledge BS, Choy WY, Duennwald ML. Folding or holding?—Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease[J]. J Biol Chem, 2022, 298(5): 101905. DOI: 101905.10.1016/j.jbc.2022.101905.
17.Hu C, Yang J, Qi Z, et al. Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities[J]. MedComm (2020), 2022, 3(3): e161. DOI: 10.1002/mco2.161.
18.Cyran AM, Zhitkovich A. Heat shock proteins and HSF1 in cancer[J]. Front Oncol, 2022, 12: 860320. DOI: 10.3389/fonc.2022.860320.
19.Hino C, Chan G, Jordaan G, et al. Cellular protection from H2O2 toxicity by Fv-Hsp70: protection via catalase and gamma-glutamyl-cysteine synthase[J]. Cell Stress Chaperones, 2023, 28(4): 429-439. DOI: 10.1007/s12192-023-01349-6.
20.Xu H, Takashi E, Liang J, et al. Effect of heat shock preconditioning on pressure injury prevention via Hsp27 upregulation in rat models[J]. Int J Mol Sci, 2022, 23(16): 8955. DOI: 10.3390/ijms23168955.
21.Aolymat I, Hatmal MM, Olaimat AN. The emerging role of heat shock factor 1 (HSF1) and heat shock proteins (HSPs) in ferroptosis[J]. Pathophysiology, 2023, 30(1): 63-82. DOI: 10.3390/pathophysiology30010007.
22.Cabaud-Gibouin V, Durand M, Quéré R, et al. Heat-shock proteins in leukemia and lymphoma: multitargets for innovative therapeutic approaches[J]. Cancers (Basel), 2023, 15(3): 984. DOI: 10.3390/cancers15030984.
23.Zhang JM, Jing Y, Wang K, et al. Inhibition of heat shock protein 90 attenuates the damage of blood-brain barrier integrity in traumatic brain injury mouse model[J]. Oxid Med Cell Longev, 2022, 2022: 5585384. DOI: 10.1155/2022/5585384.
24.Garza-Lombó C, Pappa A, Panayiotidis MI, et al. Redox homeostasis, oxidative stress and mitophagy[J]. Mitochondrion, 2020, 51: 105-117. DOI: 10.1016/j.mito.2020.01.002.
25.Millarte V, Spiess M. RABEP1/Rabaptin5: a link between autophagy and early endosome homeostasis[J]. Autophagy, 2022, 18(3): 698-699. DOI: 10.1080/15548627.2021.2021497.
26.Alcántara C, Patel SR, Carnethon M, et al. Stress and sleep: results from the Hispanic community health study/study of Latinos sociocultural ancillary study[J]. SSM Popul Health, 2017, 3: 713-721. DOI: 10.1016/j.ssmph.2017.08.004.
27.Rabi T, Arandi NZ, Rabi H, et al. Evaluating study approach of dental students in palestine using a study process questionnaire: a cross-sectional study[J]. J Pharm Bioallied Sci, 2024, 16(Suppl 1): S122-S124. DOI: 10.4103/jpbs.jpbs_412_23.
28.Liu C, Liu Y, Chen H, et al. Myocardial injury: where inflammation and autophagy meet[J]. Burns Trauma, 2023, 11: tkac062. DOI: 10.1093/burnst/tkac062.
29.Li X, Jiao K, Liu C, et al. Bibliometric analysis of the inflammation expression after spinal cord injury: current research status and emerging frontiers[J]. Spinal Cord, 2024, 62(11): 609-618. DOI: 10.1038/s41393-024-01038-w.
30.Li Y, Lei Z, Ritzel RM, et al. Impairment of autophagy after spinal cord injury potentiates neuroinflammation and motor function deficit in mice[J]. Theranostics, 2022, 12(12): 5364-5388. DOI: 10.7150/thno.72713.
31.Yang B, Yang X. Autophagy exerts a protective role in cervical spinal cord injury by microglia inhibition through the nuclear factor kappa-B pathway[J]. Folia Morphol (Warsz), 2023, 83(1): 113-124. DOI: 10.5603/FM.a2023.0036.
32.Rao J, Wu Y, Fan X, et al. Facilitating mitophagy via Pink1/Parkin2 signaling is essential for the neuroprotective effect of β-caryophyllene against CIR-induced neuronal injury[J]. Brain Sci, 2022, 12(7): 868. DOI: 10.3390/brainsci12070868.
33.Kong F, Xie C, Zhao X, et al. Resveratrol regulates PINK1/Parkin-mediated mitophagy via the lncRNA ZFAS1-miR-150-5p-PINK1 axis, and enhances the antitumor activity of paclitaxel against non-small cell lung cancer[J]. Toxicol Res (Camb), 2022, 11(6): 962-974. DOI: 10.1093/toxres/tfac072.
34.Gong QY, Cai L, Jing Y, et al. Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice[J]. Neural Regen Res, 2022, 17(9): 2007-2013. DOI: 10.4103/1673-5374.335163.
35.Shi Q, Wu Y, Zhang B, et al. Progranulin promotes functional recovery in rats with acute spinal cord injury via autophagy-induced anti-inflammatory microglial polarization[J]. Mol Neurobiol, 2022, 59: 4304-4314. DOI: 10.1007/s12035-022-02836-0.
36.Bruhn SM, Ingelsrud LH, Bandholm T, et al. Disentangling treatment pathways for knee osteoarthritis: a study protocol for the TREATright study including a prospective cohort study, a qualitative study and a cost-effectiveness study[J]. BMJ Open, 2021, 11(7): e048411. DOI: 10.1136/bmjopen-2020-048411.
37.Hepprich M, Zillig D, Florian-Reynoso MA, et al. Switch-to-semaglutidestudy (STS-Study): a retrospective cohort study[J]. Diabetes Ther, 2021, 12: 943-954. DOI: 10.1007/s13300-021-01016-y.
38.Sutcu HH, Rassinoux P, Donnio LM, et al. Decline of DNA damage response along with myogenic differentiation[J]. Life Sci Alliance, 2023, 7(2): e202302279. DOI: 10.26508/lsa.202302279.
39.Li N, Chen H, Wang J. DNA damage and repair in the hematopoietic system[J]. Acta Biochim Biophys Sin (Shanghai), 2022, 54(6): 847-857. DOI: 10.3724/abbs.2022053.
40.Zhang H, Chen Y, Jiang Y, et al. DNA double-strand break repair and nucleic acid-related immunity[J]. Acta Biochim Biophys Sin (Shanghai), 2022, 54(6): 828-835. DOI: 10.3724/abbs.2022061.