Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 38,2025 No.7 Detail

Analysis of secular variation trends of incidence and SARIMA model prediction of other infectious diarrhea in Dali Prefecture from 2005 to 2024

Published on Jul. 29, 2025Total Views: 60 times Total Downloads: 11 times Download Mobile

Author: XU Ran 1 MA Yajiao 2 YOU Fengfeng 3 CHEN Ling 1 MA Yi 1 ZHAO Runfang 1 ZHAO Jing 1 Lyu Shisai 1 HE Zuo 1

Affiliation: 1. Department of Acute Infectious Disease Prevention and Control, Center for Disease Control and Prevention for Dali Bai Autonomous Prefecture, Dali 671000, Yunnan Province, China 2. Department of Laboratory Medicine, Binchuan County Center for Disease Control and Prevention, Dali 671600, Yunnan Province, China 3. Department of Laboratory Medicine, Dali Bai Autonomous Prefecture People’s Hospital, Dali 671000, Yunnan Province, China

Keywords: Other infectious diarrheal Incidence Trend Joinpoint regression SARIMA model

DOI: 10.12173/j.issn.1004-4337.202502039

Reference: Xu R, Ma YJ, You FF, Chen L, Ma Y, Zhao RF, Zhao J, Lyu SS, He Z. Analysis of secular variation trends of incidence and SARIMA model prediction of other infectious diarrhea in Dali Prefecture from 2005 to 2024[J]. Journal of Mathematical Medicine, 2025, 38(7): 500-507. DOI: 10.12173/j.issn.1004-4337.202502039[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To analyze the secular variation trends of incidence of other infectious diarrhea in Dali Prefecture from 2005 to 2024, and predict the incidence.

Methods  Data on other infectious diarrhea cases in Dali Prefecture from 2005 to 2024 were collected based on  China Information System for Disease Prevention and Control. Jointpoint regression analysis was used to analyze the secular variation trends of incidence, and a SARIMA model was used to predict the trend of the incidence.

Results  A total of 19 953 cases of other infectious diarrhea were reported in Dali Prefecture from 2005 to 2024, with the reported incidence rate ranging from 5.31/100 000 to 143.64/100 000, and the average reported incidence rate of 28.56/100 000. Among the confirmed cases, the virus infection accounted for the majority (97.70%), and rotavirus was the predominant virus (87.67%). The results of the Joinpoint regression analysis showed that the reported incidence rate of other infectious diarrhea in Dali Prefecture revealed an overall upward trend from 2005 to 2024 [average annual percent change (AAPC)=11.17%, 95% confidence interval (CI): 8.01%-16.67%, P<0.001]. The secular variation trends of the incidence in the 12 counties of Dali Prefecture had their own characteristics, showing overall upward trends, with the AAPC values ranging from 7.27% to 37.15%. The differences were statistically significant (P<0.05). The incidence rates among different gender and age groups showed upward trends, and the differences were statistically significant (P<0.05). The constructed SARIMA (2, 1, 1) (0, 1, 0) 12 model showed that the relative prediction error was 42.07%. It is predicted that the number of cases of other infectious diarrhea in Dali Prefecture in 2025 will be 5 817, showing an upward trend of the incidence.

Conclusions  The incidence of other infectious diarrhea diseases in Dali Prefecture showed a continuous upward trend. Although there were errors in the predictions by the SARIMA (2,1,1) (0,1,0)  12 model, its prediction results can still provide references for early warning and precise prevention and control of the disease.

Full-text
Please download the PDF version to read the full text: download
References

1.李欣, 靳金, 史雪宁, 等. 2010—2017年全国其他感染性腹泻空间聚集情况及预测[J]. 中华疾病控制杂志, 2022, 26(4): 376-379, 462. [Li X, Jin J, Shi XN, et al. Spatial aggregation and prediction model of other infectious diarrhea in China from 2010 to 2017[J]. Chinese Journal of Disease Control and Prevention, 2022, 26(4): 376-379, 462.] DOI: 10.16462/j.cnki.zhjbkz.2022.04.002.

2.潘欢欢, 李锋平, 吕文辉, 等. 2010—2020年泉州市其他感染性腹泻流行特征及其发病趋势预测[J]. 应用预防医学, 2022, 28(2): 174-176. [Pan HH, Li FP, Lv WH. Epidemiological characteristics of other infectious diarrhea in Quanzhou City from 2010 to 2020 and prediction of its incidence trend[J]. Applied Prevention Medicine, 2022, 28(2): 174-176.] https://kns.cnki.net/kcms2/article/abstract?v=TD_mLQSGK6scNq5H4950Dc6KkHD6c1x_PFMK2ebPNp4CHus1KmYIotbHPtfsWsN4zkt8gfcg6eztg4-wz-I7yxlioVeLY7cQLlNbyQRHc9qswiMf7VKUTwNpFNP64TWfYz2UZ9MUkFFKotO2u3vqhB4F8W-77T_boO0qiCln1uE52S6uKEnbGQ==&uniplatform=NZKPT&language=CHS

3.茅蓉, 向泽林, 王远航, 等. 2017—2022年浙江省其他感染性腹泻病ARIMA模型预测精度分析[J]. 健康研究, 2024, 44(5): 528-533. [Mao R, Xiang ZL, Wang YH, et al. Analysis of the prediction accuracy of ARIMA model for other infectious diarrhea diseases in Zhejiang Province from 2017 to 2022[J]. Health Research, 2024, 44(5): 528-533.] DOI: 10.19890 /j.cnki.issn1674-6449.2024.05.011.

4.中华人民共和国卫生部. 感染性腹泻诊断标准: WS271-2007[S]. 北京: 人民卫生出版社, 2007: 1-20. [Ministry of Health of the People's Republic of China. Diagnostic criteria for infectious diarrhea: WS271-2007[S]. Beijing: People's Health Publishing House, 2007: 1-20.] https://www.nhc.gov.cn/wjw/s9491/200704/38817.shtml

5.孙飞, 韩晓莉, 苏通, 等. 2013—2022年河北省张家口市手足口病流行趋势Joinpoint回归分析[J]. 上海预防医学, 2024, 36(9): 858-861, 867. [Sun F, Hao XL, Su T, et al. Joinpoint regression analysis of hand, foot, and mouth disease trends in Zhangjiakou City, Hebei Province from 2013 to 2022[J]. Shanghai Journal of Preventive Medicine, 2024, 36(9): 858-861, 867.] DOI: 10.19428/j.cnki.sjpm.2024.24057.

6.李芳, 杨广树, 孙光红, 等. 2009—2021年广元市手足口病流行趋势的Joinpoint回归分析[J]. 预防医学情报杂志, 2023, 39(7): 772-776, 781. [Li F, Yang GS, Sun GH. Joinpoint regression analysis on the trends of hand-foot-mouth disease epidemics in Guangyuan City from 2009 to 2021[J]. Journal of Preventive Medicine Information, 2023, 39(7): 772-776, 781.]https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjUwMTE2MTYzNjE0EhF5Znl4cWJ6ejIwMjMwNzAxMBoIM3Nid2l4YzY%3D

7.易志杰, 裴书君, 索文帅, 等. SARIMA模型在河南省手足口病发病率预测中的应用[J]. 中国预防医学杂志, 2021, 22(12): 898-902. [Yi ZJ, Pei SJ, Suo WS, et al. Application of SARIMA model in incidence prediction of hand-foot-mouth disease in Henan province[J]. Chinese Preventive Medicine, 2021, 22(12): 898-902.] DOI: 10.16506/j.1009-6639.2021.12.002.

8.刘天, 张丽杰, 翁熹君, 等. SARIMA模型参数设置探讨 [J]. 实用预防医学, 2019, 26(12): 1530-1534. [Liu T, Zhang LJ, Weng XJ, et al. Discussion on parameter setting of SARIMA model[J]. Practical Preventive Medicine, 2019, 26(12): 1530-1534.] DOI: 10.3969/j.issn.1006-3110.2019.12.036.

9.沈秀莲, 何继波, 黄甜, 等. 云南省2005—2022年其他感染性腹泻流行病学特征及趋势分析[J]. 中国热带医学, 2024, 24(9): 1153-1160. [Shen XL, He JB, Huang T, et al. Epidemiological characteristics and trend analysis of other infectious diarrheal diseases in Yunnan Province from 2005 to 2022[J]. China Tropical Medicine, 2024, 24(9): 1153-1160.] DOI: 10.13604/j.cnki.46-1064/r.2024.09.23.

10.刘洪泊, 陈晓明, 艾彦彪, 等. 2013—2022年重庆市涪陵区其他感染性腹泻流行病学特征及发病率长期变化趋势[J]. 实用预防医学, 2024, 31(9): 1030-1034. [Liu HB, Chen XM, Ai YB, et al. Epidemiological characteristics of other infectious diarrhea and secular variation trends of their incidence rates in Fuling District of Chongqing Municipality, 2013-2022[J]. Practical Preventive Medicine, 2024, 31(9): 1030-1034.] DOI: 10.3969/j.issn.1006-3110.2024.09.002.

11.查志艳, 周永明, 周洋, 等. 2017—2021年昆明市其他感染性腹泻流行特征分析[J]. 热带病与寄生虫学, 2023, 21(1): 20-24. [Zha ZY, Zhou YM, Zhou Yang, et al. Epidemiological characteristics of other infectious diarrhea in Kunming City from 2017 to 2021[J]. Journal of Tropical Diseases and Parasitology, 2023, 21(1): 20-24.] DOI: 10.3969/j.issn.1672-2302.2023.01.004.

12.覃敏兰, 潘燕兰, 甘武明, 等. 2011—2021年梧州市其他感染性腹泻流行病学特征分析[J].职业与健康, 2024, 40(6): 777-781. [Qin ML, Pan YL, Gang WM, et al. Analysis on epidemiological characteristics of other infectious diarrhea in Wuzhou City from 2011-2021[J]. Occupation and Health, 2024, 40(6): 777-781.] DOI: 10.13329/j.cnki.zyyjk.2024.0146.

13.罗月, 张晓燕, 王亚, 等. 2013—2022年重庆市永川区其他感染性腹泻流行特征及变化趋势分析[J]. 应用预防医学, 2024, 30(2): 133-136. [Luo Y, Zhang XY, Wang Y, et al. Analysis of Characteristics and Change Trends of Other infectious diarrhea outbreaks in Yongchuan District, Chongqing from 2013 to 2022[J]. Applied Preventive Medicine, 2024, 30(2): 133-136.] https://kns.cnki.net/kcms2/article/abstract?v=XMmmt_ij6VGGER3m4YCRcvJN0XoQC75eNpRVyZnfwoaIFRzYRwGryY3tuih1Ll19MkCtPpYrV0IMxllOucj8zJfGY8fH4YY8ualwL5HAsn-PF_9KmtTxpODG8m4ikiIR2QxJHwvdG-zWsISc6PANAYs143I8jw0vLGnyNN1njolpc3v38bbbEQ==&uniplatform=NZKPT&language=CHS

14.魏新刚, 曹桂芝, 李涵博, 等. ARIMA模型在其他感染性腹泻发病预测中的应用[J]. 现代医药卫生, 2019, 35(21): 3281-3284. [Wei XG, Cao GZ, Li HB, et al. Application of ARIMA model in the predicting incidence of other infectious diarrhea[J]. Journal of Modern Medicine & Health, 2019, 35(21): 3281-3284.] DOI: 10.3969/j.issn.1009-5519.2019.21.012.

15.徐玲, 李秀央. 上城区其他感染性腹泻ARIMA乘积季节模型的建立与预测[J]. 实用预防医学, 2023, 30(1): 111-115. [Xu L, Li XY. Establishment and prediction of multiple seasonal ARIMA model for other infectious diarrhea in Shangcheng District[J]. Practical Preventive Medicine, 2023, 30(1): 111-115.] DOI: 10.3969/j.issn.1006-3110.2023.01.029.

16.刘希波, 曹静, 王云, 等. ARIMA预测模型在甘肃省其他感染性腹泻发病预测中的应用[J]. 实用预防医学, 2021, 28(1): 113-116. [Liu XB, Cao J, Wang Y, et al. Application of ARIMA prediction model in forecasting the incidence of other infectious diarrhea in Gansu Province[J]. Practical Preventive Medicine, 2021, 28(1): 113-116.] DOI: 10.3969/j.issn.1006-3110.2021.01.031.

Popular papers
Last 6 months