Objective To explore the effect and mechanism of cycloastragenol (CAG) in the treatment of bronchopulmonary dysplasia (BPD) by inhibiting inflammatory response through network pharmacology combined with in vitro experiment.
Methods Network pharmacology was used to screen and predict key targets and signaling pathways of CAG in treating BPD by regulating inflammatory response. The key targets obtained were molecular-docked and further verified by in vitro experiments to explore the possible mechanisms.
Results Through network pharmacological analysis, 92 intersection targets of CAG, inflammation, and BPD were obtained. The protein-protein interaction (PPI) network showed that TNF, AKT1, NFKB1, STAT3, EGFR, HIF1A, TLR4, etc., may be the key targets of CAG in treating BPD. The results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the effects of CAG treatment on BPD were mainly through HIF-1, IL-17 and other signaling pathways. Molecular docking analysis showed that CAG had a high affinity to TNF, TLR4, and HIF1A. In the in vitro BPD cell model, quantitative reverse transcription polymerase chain reaction (qRT-PCR) results showed that mRNA levels of TNF-α, IL-1β, IL-6, IL-8, and IL-17A in the model group were significantly increased, while HIF-1α was significantly decreased, and TLR4 changes were not statistically significant. After CAG intervention, the expression of TNF-α and related inflammatory factors was significantly decreased, and the expression of HIF-1α was significantly increased. Meanwhile, Western Blot results also verified that CAG could effectively inhibit the level of TNF-α protein.
Conclusion CAG may improve the inflammatory response of epithelial cells by inhibiting the expression of TNF-α and related inflammatory factors while increasing the expression of HIF-1α to alleviate BPD.
1.Gentle SJ, Travers CP, Clark M, et al. Patent ductus arteriosus and development of bronchopulmonary dysplasia-associated pulmonary hypertension[J]. Am J Respir Crit Care Med, 2023, 207(7): 921-928. DOI: 10.1164/rccm.202203-0570OC.
2.Hansmann G, Sallmon H, Roehr CC, et al. Pulmonary hypertension in bronchopulmonary dysplasia[J]. Pediatr Res, 2021, 89(3): 446-455. DOI: 10.1038/s41390-020-0993-4.
3.Kwok TC, Sharkey D. Bedside assessment of pulmonary gas exchange in very preterm infants: a pathophysiological approach to bronchopulmonary dysplasia diagnosis?[J]. Thorax, 2021, 76(7): 642-643. DOI: 10.1136/thoraxjnl-2021-216912.
4.Balany J, Bhandari V. Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2015, 2: 90. DOI: 10.3389/fmed.2015.00090.
5.Shukla VV, Ambalavanan N. Recent advances in bronchopulmonary dysplasia[J]. Indian J Pediatr, 2021, 88(7): 690-695. DOI: 10.1007/s12098-021-03766-w.
6.Park D, Jung JH, Ko HM, et al. Antitumor effect of cycloastragenol in colon cancer cells via p53 activation[J]. Int J Mol Sci, 2022, 23(23): 15213. DOI: 10.3390/ijms232315213.
7.Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st century: innovations for novel drug discovery[J]. Int J Mol Sci, 2018, 19(6): 1578. DOI: 10.3390/ijms19061578.
8.Uwineza PA, Waśkiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials[J]. Molecules, 2020, 25(17): 3847. DOI: 10.3390/molecules25173847.
9.Zhu X, Liu B, Ruan Z, et al. TMT-based quantitative proteomic analysis reveals downregulation of ITGAL and Syk by the effects of cycloastragenol in OVA-induced asthmatic mice[J]. Oxid Med Cell Longev, 2022, 2022: 6842530. DOI: 10.1155/2022/6842530.
10.Yung LY, Lam WS, Ho MK, et al. Astragaloside IV and cycloastragenol stimulate the phosphorylation of extracellular signal-regulated protein kinase in multiple cell types[J]. Planta Med, 2012, 78(2): 115-121. DOI: 10.1055/s-0031-1280346.
11.Yu Y, Zhou L, Yang Y, et al. Cycloastragenol: an exciting novel candidate for age-associated diseases[J]. Exp Ther Med, 2018, 16(3): 2175-2182. DOI: 10.3892/etm.2018.6501.
12.Deng G, Zhou L, Wang B, et al. Targeting cathepsin b by cycloastragenol enhances antitumor immunity of CD8 T cells via inhibiting MHC-I degradation[J]. J Immunother Cancer, 2022, 10(10): e004874. DOI: 10.1136/jitc-2022-004874.
13.Yang M, Chen Y, Huang X, et al. ETS1 ameliorates hyperoxia-induced bronchopulmonary dysplasia in mice by activating Nrf2/HO-1 mediated ferroptosis[J]. Lung, 2023, 201(4): 425-441. DOI: 10.1007/s00408-023-00639-1.
14.Zhao Y, Tao J, Chen Z, et al. Functional drug-target-disease network analysis of gene-phenotype connectivity for curcumin in hepatocellular carcinoma[J]. PeerJ, 2021, 9: e12339. DOI: 10.7717/peerj.12339.
15.Rutherford KD, Mazandu GK, Mulder NJ. A systems-level analysis of drug-target-disease associations for drug repositioning[J]. Brief Funct Genomics, 2018, 17(1): 34-41. DOI: 10.1093/bfgp/elx015.
16.Zhu Y, Hou H, Li Y, et al. Hyperoxia exposure induces ferroptosis and apoptosis by downregulating PLAGL2 and repressing HIF-1α/VEGF signaling pathway in newborn alveolar typeii epithelial cell[J]. Redox Rep, 2024, 29(1): 2387465. DOI: 10.1080/13510002.2024.2387465.
17.Schmidt AR, Ramamoorthy C. Bronchopulmonary dysplasia[J]. Paediatr Anaesth, 2022, 32(2): 174-180. DOI: 10.1111/pan.14365.
18.Tsotakos N, Ahmed I, Umstead TM, et al. All trans-retinoic acid modulates hyperoxia-induced suppression of NF-kB-dependent Wnt signaling in alveolar A549 epithelial cells[J]. PLoS One, 2022, 17(8): e0272769. DOI: 10.1371/journal.pone.0272769.
19.Gilfillan M, Bhandari A, Bhandari V. Diagnosis and management of bronchopulmonary dysplasia[J]. BMJ, 2021, 375: n1974. DOI: 10.1136/bmj.n1974.
20.Miller AN, Shepherd EG, El-Ferzli G, et al. Multidisciplinary bronchopulmonary dysplasia care[J]. Expert Rev Respir Med, 2023, 17(11): 989-1002. DOI: 10.1080/17476348.2023.2283120.
21.Omar SA, Abdul-Hafez A, Ibrahim S, et al. Stem-cell therapy for bronchopulmonary dysplasia (BPD) in newborns[J]. Cells, 2022, 11(8): 1275. DOI: 10.3390/cells11081275.
22.Wang G, Ma C, Chen K, et al. Cycloastragenol attenuates osteoclastogenesis and bone loss by targeting RANKL-induced Nrf2/Keap1/ARE, NF-κB, calcium, and NFATc1 pathways[J]. Front Pharmacol, 2022, 12: 810322. DOI: 10.3389/fphar.2021.810322.
23.Hwang ST, Kim C, Lee JH, et al. Cycloastragenol can negate constitutive STAT3 activation and promote paclitaxel-induced apoptosis in human gastric cancer cells[J]. Phytomedicine, 2019, 59: 152907. DOI: 10.1016/j.phymed.2019.152907.
24.Szychlinska MA, Calabrese G, Ravalli S, et al. Cycloastragenol as an exogenous enhancer of chondrogenic differentiation of human adipose-derived mesenchymal stem cells. a morphological study[J]. Cells, 2020, 9(2): 347. DOI: 10.3390/cells9020347.
25.Melin LG, Dall JH, Lindholt JS, et al. Cycloastragenol inhibits experimental abdominal aortic aneurysm progression[J]. Biomedicines, 2022, 10(2): 359. DOI: 10.3390/biomedicines10020359.
26.Deng G, Chen W, Wang P, et al. Inhibition of NLRP3 inflammasome-mediated pyroptosis in macrophage by cycloastragenol contributes to amelioration of imiquimod-induced psoriasis-like skin inflammation in mice[J]. Int Immunopharmacol, 2019, 74: 105682. DOI: 10.1016/j.intimp.2019.105682.
27.Jarosz-Griffiths HH, Holbrook J, Lara-Reyna S, et al. TNF receptor signalling in autoinflammatory diseases[J]. Int Immunol, 2019, 31(10): 639-648. DOI: 10.1093/intimm/dxz024.
28.Bohr A, Tsapis N, Foged C, et al. Treatment of acute lung inflammation by pulmonary delivery of anti-TNF-α siRNA with PAMAM dendrimers in a murine model[J]. Eur J Pharm Biopharm, 2020, 156: 114-120. DOI: 10.1016/j.ejpb.2020.08.009.
29.Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies[J]. Nat Rev Rheumatol, 2016, 12(1): 49-62. DOI: 10.1038/nrrheum.2015.169.
30.Skeoch S, Bruce IN. Atherosclerosis in rheumatoid arthritis: is it all about inflammation?[J]. Nat Rev Rheumatol, 2015, 11(7): 390-400. DOI: 10.1038/nrrheum.2015.40.
31.Zhang Z, Jiang J, Li Z, et al. The change of cytokines and gut microbiome in preterm infants for bronchopulmonary dysplasia[J]. Front Microbiol, 2022, 13: 804887. DOI: 10.3389/fmicb.2022.804887.
32.Zhang Z, Wu W, Hou L, et al. Cytokines and exhaled nitric oxide are risk factors in preterm infants for bronchopulmonary dysplasia[J]. Biomed Res Int, 2021, 2021: 6648208. DOI: 10.1155/2021/6648208.
33.Xiao P, Hu Z, Lang J, et al. Mannose metabolism normalizes gut homeostasis by blocking the TNF-α-mediated proinflammatory circuit[J]. Cell Mol Immunol, 2023, 20(2): 119-130. DOI: 10.1038/s41423-022-00955-1.
34.Xu X, Piao HN, Aosai F, et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways[J]. Br J Pharmacol, 2020, 177(22): 5224-5245. DOI: 10.1111/bph.15261.
35.Wang R, Li Q, Wu P, et al. Fe-capsaicin nanozymes attenuate sepsis-induced acute lung injury via NF-κB signaling[J]. Int J Nanomedicine, 2024, 19: 73-90. DOI: 10.2147/ijn.S436271.
36.Jie XL, Luo ZR, Yu J, et al. Pi-Pa-Run-Fei-Tang alleviates lung injury by modulating IL-6/JAK2/STAT3/IL-17 and PI3K/AKT/NF-κB signaling pathway and balancing Th17 and Treg in murine model of OVA-induced asthma[J]. J Ethnopharmacol, 2023, 317: 116719. DOI: 10.1016/j.jep.2023.116719.
37.Zhang B, Zeng M, Zhang Q, et al. Ephedrae herba polysaccharides inhibit the inflammation of ovalbumin induced asthma by regulating Th1/Th2 and Th17/Treg cell immune imbalance[J]. Mol Immunol, 2022, 152: 14-26. DOI: 10.1016/j.molimm.2022.09.009.
38.Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling[J]. Cell Mol Life Sci, 2021, 78(4): 1233-1261. DOI: 10.1007/s00018-020-03656-y.
39.Rogero MM, Calder PC. Obesity, inflammation, Toll-like receptor 4 and fatty acids[J]. Nutrients, 2018, 10(4): 432. DOI: 10.3390/nu10040432.
40.Zhao S, Gao J, Li J, et al. PD-L1 regulates inflammation in LPS-induced lung epithelial cells and vascular endothelial cells by interacting with the HIF-1α signaling pathway [J]. Inflammation, 2021, 44(5): 1969-1981. DOI: 10.1007/s10753-021-01474-3.
41.Shi J, Yu T, Song K, et al. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway[J]. Redox Biol, 2021, 41: 101954. DOI: 10.1016/j.redox.2021.101954.
42.Roy RM, Allawzi A, Burns N, et al. Lactate produced by alveolar type II cells suppresses inflammatory alveolar macrophages in acute lung injury[J]. FASEB J, 2023, 37(12): e23316. DOI: 10.1096/fj.202301722R.
43.Korbecki J, Simińska D, Gąssowska-Dobrowolska M, et al. Chronic and cycling hypoxia: drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: a review of the molecular mechanisms[J]. Int J Mol Sci, 2021, 22(19): 10701. DOI: 10.3390/ijms221910701.
44.Zhao M, Wang S, Zuo A, et al. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury[J]. Cell Mol Biol Lett, 2021, 26(1): 40. DOI: 10.1186/s11658-021-00283-8.
45.Mcgeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease[J]. Immunity, 2019, 50(4): 892-906. DOI: 10.1016/j.immuni.2019.03.021.
46.Cai J, Lu H, Su Z, et al. Dynamic changes of NCR(-) type 3 innate lymphoid cells and their role in mice with bronchopulmonary dysplasia[J]. Inflammation, 2022, 45(2): 497-508. DOI: 10.1007/s10753-021-01543-7.