Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 39,2026 No.1 Detail

Exploring the potential pathway of puerarin in the treatment of oral submucous fibrosis based on bioinformatics methods and cell experiments

Published on Jan. 29, 2026Total Views: 118 times Total Downloads: 33 times Download Mobile

Author: LU Ruqing GUO Sheng PENG Jiamei LI Yijie LIU Gen

Affiliation: Department of Dental Cosmetology, Changsha Stomatological Hospital, Changsha 410004, China

Keywords: Puerarin Oral submucous fibrosis Bioinformatics Network pharmacology Molecular docking Molecular dynamics simulation Cell experiments

DOI: 10.12173/j.issn.1004-4337.202504030

Reference: Lu RQ, Guo S, Peng JM, Li YJ, Liu G. Exploring the potential pathway of puerarin in the treatment of oral submucous fibrosis based on bioinformatics methods and cell experiments[J]. Journal of Mathematical Medicine, 2026, 39(1): 45-57. DOI: 10.12173/j.issn.1004-4337.202504030[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the potential mechanism of puerarin in the treatment of oral submucous fibrosis (OSF) using an integrated strategy combining network pharmacology, molecular docking, molecular dynamics simulation and cellular experiments.

Methods  Putative targets of puerarin were retrieved from the TCMSP, Comparative Toxicogenomics Database and PharmMapper databases. OSF-related targets were collected from GeneCards, DisGeNet and OMIM databases. The overlapping targets between puerarin and OSF were identified, and a protein-protein interaction (PPI) network was constructed to screen for core targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on these core targets. Molecular docking was carried out using AutoDock 4.2.6 software, and the top-ranked complexes were subjected to molecular dynamics simulation using GROMACS 2020.6 software to validate binding stability. After assessing the effects of different puerarin concentrations on HaCaT cell viability, the cells were divided into five groups: blank control, model, low-dose puerarin, medium-dose puerarin and high-dose puerarin groups. The mRNA and protein expression levels of TNF, MMP2, EGFR and MMP9 were detected in each group.

Results  A total of 400 puerarin targets and 969 OSF-related targets were screened, yielding 81 overlapping targets. GO and KEGG analyses indicated that the potential mechanisms primarily involve the positive regulation of cell population proliferation, the extracellular space, and the AGE-RAGE signaling pathway. Molecular docking and molecular dynamics simulation demonstrated strong binding affinity of puerarin to core targets like TNF, MMP2, EGFR and MMP9, with stable conformational binding and persistent hydrogen bond interactions. In vitro experiments confirmed that compared to the blank control group, the mRNA and protein expression levels of TNF, MMP2, EGFR and MMP9 were significantly upregulated in the model group (P<0.01). Puerarin treatment significantly reversed these increases in all dose groups compared to the model group (P<0.05).

Conclusion  The molecular mechanism by which puerarin treated OSF was potentially associated with the suppression of key factors such as TNF, MMP2, EGFR and MMP9. This involved the inhibition of inflammatory responses, regulation of extracellular matrix degradation, and modulation of cell proliferation, differentiation, and epithelial-mesenchymal transition.

Full-text
Please download the PDF version to read the full text: download
References

1.陈灵, 杜永秀, 徐普, 等. 口腔黏膜下纤维性变的治疗研究进展[J]. 河北医药, 2024, 46(17): 2675-2679, 2685. [Chen L, Du YX, Xu P, et al. Research progress of the treatment of oral submucosal fibrous[J]. Hebei Medical Journal, 2024, 46(17): 2675-2679, 2685.] DOI: 10.3969/j.issn.1002-7386.2024.17.026.

2.Wang M, Duan C, Wei Y, et al. Prevalence of oral submucous fibrosis across diverse populations: a systematic review and meta-analysis[J]. PeerJ, 2024, 12: e18385. DOI: 10.7717/peerj.18385.

3.Pavan Kumar B, Narra P, Vidya Devi V, et al. Prevalence of premalignant conditions and their transformation into oral cancers: a clinical study[J]. J Pharm Bioallied Sci, 2024, 16(Suppl 3): S2563-S2565. DOI: 10.4103/jpbs.jpbs_1084_23.

4.陈冠君, 符骁, 冼海瑜, 等. 133例口腔黏膜下纤维性变癌变的病理及临床生物学行为研究[J]. 国际口腔医学杂志, 2024, 51(5): 532-537. [Chen GJ, Fu X, Xian HY, et al. Retrospective study on the pathological and clinical biological behavior of 133 cases of oral squamous cell carcinomas originated from oral submucous fibrosis[J]. International Journal of Stomatology, 2024, 51(5): 532-537.] DOI: 10.7518/gjkq.2024075.

5.R K, Chandra A, Raja D, et al. Exploring the role of angiogenesis in fibrosis and malignant transformation in oral submucous fibrosis: a systematic review and meta-analysis[J]. J Korean Assoc Oral Maxillofac Surg, 2024, 50(5): 243-252. DOI: 10.5125/jkaoms.2024.50.5.243.

6.Iocca O, Sollecito TP, Alawi F, et al. Potentially malignant disorders of the oral cavity and oral dysplasia: a systematic review and meta-analysis of malignant transformation rate by subtype[J]. Head Neck, 2020, 42(3): 539-555. DOI: 10.1002/hed.26006.

7.Chen X, Xie H, Guo J. Drug treatment for oral submucous fibrosis: an update[J]. BMC Oral Health, 2023, 23(1): 748. DOI: 10.1186/s12903-023-03488-9.

8.Chitlange NM, Phansopkar P. Physiotherapeutic approach in oral submucous fibrosis: a systematic review[J]. Cureus, 2023, 15(11): e48155. DOI: 10.7759/cureus.48155.

9.Nerkar Rajbhoj A, Kulkarni TM, Shete A, et al. A comparative study to evaluate efficacy of curcumin and aloe vera gel along with oral physiotherapy in the management of oral submucous fibrosis: a randomized clinical trial[J]. Asian Pac J Cancer Prev, 2021, 22(S1): 107-112. DOI: 10.31557/APJCP.2021.22.S1.107.

10.Singh N, Hebbale M, Mhapuskar A, et al. Effectiveness of aloe vera and antioxidant along with physiotherapy in the management of oral submucous fibrosis[J]. J Contemp Dent Pract, 2016, 17(1): 78-84. DOI: 10.5005/jp-journals-10024-1806.

11.Rai V, Bose S, Saha S, et al. Evaluation of oxidative stress and the microenvironment in oral submucous fibrosis[J]. Heliyon, 2019, 5(4): e01502. DOI: 10.1016/j.heliyon.2019.e01502.

12.Wang J, Ge S, Wang Y, et al. Puerarin alleviates UUO-induced inflammation and fibrosis by regulating the NF-κB p65/STAT3 and TGFβ1/Smads signaling pathways[J]. Drug Des Devel Ther, 2021, 15: 3697-3708. DOI: 10.2147/DDDT.S321879.

13.Chang Y, Guo A, Jing Y, et al. Immunomodulatory activity of puerarin in RAW264.7 macrophages and cyclophosphamide-induced immunosuppression mice[J]. Immunopharmacol Immunotoxicol, 2021, 43(2): 223-229. DOI: 10.1080/08923973.2021.1885043.

14.Jian J, Wang D, Xiong Y, et al. Puerarin alleviated oxidative stress and ferroptosis during renal fibrosis induced by ischemia/reperfusion injury via TLR4/Nox4 pathway in rats[J]. Acta Cir Bras, 2023, 38: e382523. DOI: 10.1590/acb382523.

15.Xue Z, Zhao F, Sang X, et al. Combination therapy of tanshinone IIA and puerarin for pulmonary fibrosis via targeting IL6-JAK2-STAT3/STAT1 signaling pathways[J]. Phytother Res, 2021, 35(10): 5883-5898. DOI: 10.1002/ptr.7253.

16.Huang GR, Wei SJ, Huang YQ, et al. Mechanism of combined use of vitamin D and puerarin in anti-hepatic fibrosis by regulating the Wnt/β-catenin signalling pathway[J]. World J Gastroenterol, 2018, 24(36): 4178-4185. DOI: 10.3748/wjg.v24.i36.4178.

17.Zhao L, Zhang H, Li N, et al. Network pharmacology,a promising approach to reveal the pharmacology mechanism of Chinese medicine formula[J]. J Ethnopharmacol, 2023, 309: 116306. DOI: 10.1016/j.jep.2023.116306.

18.Hopkins AL. Network pharmacology: the next paradigm in drug discovery[J]. Nat Chem Biol, 2008, 4(11): 682-690. DOI: 10.1038/nchembio.118.

19.Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery[J]. Int J Mol Sci, 2019, 20(18): 4331. DOI: 10.3390/ijms20184331.

20.Wang T, Wu MB, Chen ZJ, et al. Fragment-based drug discovery and molecular docking in drug design[J]. Curr Pharm Biotechnol, 2015, 16(1): 11-25. DOI: 10.2174/1389201015666141122204532.

21.邹红, 陈双双, 潘世杰, 等. 基于网络药理学和实验验证探讨三七总皂苷调控铁死亡干预口腔黏膜下纤维化的作用机制[J]. 中药药理与临床, 2024, 40(5): 48-56. [Zou H, Chen  SS, Pan SJ, et al. Mechanism of Panax notoginseng saponins in regulating ferroptosis for intervention in oral submucous fibrosis based on network pharmacology and experimental validation[J]. Pharmacology and Clinics of Chinese Materia Medica, 2024, 40(5): 48-56.] DOI: 10.13412/j.cnki.zyyl.20231120.002.

22.Abdul Aziz Shaikh S, Denny EC, Kumarchandra R, et al. Evaluation of salivary tumor necrosis factor α as a diagnostic biomarker in oral submucosal fibrosis and squamous cell carcinoma of the oral cavity and oropharynx:a cross-sectional observational study[J]. Front Oral Health, 2024, 5: 1375162. DOI: 10.3389/froh.2024.1375162.

23.Xie SF, Xie H, Guo JC, et al. Puerarin mediated miR-30b-5p targeting fibroblast activation protein against oral submucous fibrosis[J]. Biocell, 2024, 48(4): 591-599. DOI: 10.32604/biocell.2024.046691.

24.Shrestha A, Carnelio S. Evaluation of matrix metalloproteinases-2 (MMP-2) and tissue inhibitors of metalloproteinases-2 (TIMP-2) in oral submucous fibrosis and their correlation with disease severity[J]. Kathmandu Univ Med J (KUMJ), 2013, 11(44): 274-281. DOI: 10.3126/kumj.v11i4.12521.

25.Venugopal A, Uma Maheswari TN. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: a systematic review[J]. J Oral Maxillofac Pathol, 2016, 20(3): 474-479. DOI: 10.4103/0973-029X.190951.

26.Jyothi Meka N, Ugrappa S, Velpula N, et al. Quantitative immunoexpression of EGFR in oral potentially malignant disorders: oral leukoplakia and oral submucous fibrosis[J]. J Dent Res Dent Clin Dent Prospects, 2015, 9(3): 166-174. DOI: 10.15171/joddd.2015.031.

27.唐智群, 鲍喆煊, 聂敏. 红花-牛膝治疗口腔黏膜下纤维化作用机制的网络药理学分析[J]. 药学研究, 2024, 43(3): 220-226. [Tang ZQ, Bao ZX, Nie M. Analysis of the mechanism of safflower-achyranthes bidentata intreating oral submucous fibrosis based on network pharmacology[J]. Journal of Pharmaceutical Research, 2024, 43(3): 220-226.] DOI: 10.13506/j.cnki.jpr.2024.03.003.

28.Zhu B, Jiang Q, Que G, et al. Role of autophagy and apoptosis in atrophic epithelium in oral submucous fibrosis[J]. J Oral Sci, 2020, 62(2): 184-188. DOI: 10.2334/josnusd.19-0170.

29.张琳, 谭劲, 刘一平, 等. 姜黄素通过调控HIF-1α/miR-760/LTBP2机制轴抑制口腔黏膜下纤维化的效果研究[J]. 中医药导报, 2024, 30(1): 1-4. [Zhang L, Tan J, Liu YP, et al. Effect of Curcumin on inhibiting oral submucosal fibrosis by regulating HIF-1α/miR-760/LTBP2 axis[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2024, 30(1): 1-4.] DOI: 10.13862/j.cn43-1446/r.2024.01.001.

30.Hande AH, Chaudhary MS, Gadbail AR, et al. Significance of HIF-1α and CD105 in establishing oral squamous cell carcinoma associated with oral submucous fibrosis a distinct clinicopathological entity[J]. J Cancer Res Ther, 2022, 18(1): 33-41. DOI: 10.4103/jcrt.JCRT_591_20.

31.冯奕晨. 基于网络药理学分析探讨槟榔促进口腔黏膜下纤维化的活性成分及其潜在分子作用机制[J].中国医学工程, 2023, 31(9): 9-14. [Feng YC. Active components of Areca catechu promoting oral submucous fibrosis and its potential molecular mechanism based on network pharmacological analysis[J]. China Medical Engineering, 2023, 31(9): 9-14.] DOI: 10.19338/j.issn.1672-2019.2023.09.002.

32.朱可可, 周蓉, 王志豪, 等. 基于网络药理学和实验探讨丹玄口康治疗口腔黏膜下纤维化作用机制[J].湖南中医药大学学报, 2022, 42(9): 1485-1492. [Zhu KK, Zhou R, Wang ZH, et al. Mechanism of Danxuankoukang in treating oral submucosal fibrosis based on network pharmacology and experiment[J]. Journal of Hunan University of Chinese Medicine, 2022, 42(9): 1485-1492.] DOI: 10.3969/j.issn.1674-070X.2022.09.011.

33.张妮. 复方丹参滴丸治疗口腔黏膜下纤维化的作用机制的网络药理学分析及分子对接研究[D]. 太原: 山西医科大学, 2021. [Zhang N. Network pharmacology analysis and molecular docking study on the mechanism of Compound Danshen Dripping Pills in the treatment of oral submucosal fibrosis[D]. Taiyuan: Shanxi Medical University, 2021.] DOI: 10.27288/d.cnki.gsxyu.2021.000962.

Popular papers
Last 6 months