Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 36,2023 No.4 Detail

Analysis of the expression of TMEM88 in hepatocytes and its relationship with prognosis based on TCGA and other databases

Published on May. 06, 2023Total Views: 747 times Total Downloads: 239 times Download Mobile

Author: Andrew Liman Qian ZHU

Affiliation: Department of Hepatopancreatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Keywords: Bioinformatic Transmembrane protein 88 Hepatocellular Carcinoma

DOI: 10.12173/j.issn.1004-4337.202303214

Reference: Andrew L, Zhu Q. Analysis of the expression of TMEM88 in hepatocytes and its relationship with prognosis based on TCGA and other databases[J]. Journal of Mathematical Medicine, 2023, 36(4): 267-281. DOI: 10.12173/j.issn.1004-4337.202303214[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To compare the expression of transmembrane protein 88 (TMEM88) in normal hepatocytes and hepatocellular carcinoma hepatocytes, to observe the relationship between TMEM88 and the prognosis of patients, and to explore the potential of TMEM88 being a biomarker in the diagnosis and treatment of patients with hepatocellular carcinoma.

Methods  This study used data provided by the public databases The Cancer Genome Atlas (TCGA), STRING, cBioPortal, and Gene Expression Omnibus (GEO) and analyzed them using the Kaplan–Meier method, UALCAN, Tumor IMmune Estimation Resource (TIMER), and gene expression profiling enrichment analysis (GEPIA).

Results  TMEM88 expression was higher in liver cancer tissues than in corresponding normal tissues. TMEM88 expression in Hepatocellular Carcinoma (HCC) tissues correlates with prognosis. Low TMEM88 expression was associated with poorer overall survival, disease-specific survival, progression-free survival, and relapse-free survival in multiple cohorts of patients with HCC, particularly in late disease stages (grades 2 and 3). Furthermore, there was a positive correlation among MCPCOUNTER infiltration, XCELL infiltration and TEDER infiltration of TMEM88 in liver tumor cells.

Conclusions  These findings demonstrate that TMEM88 is a protective gene in HCC and promotes immune escape. TMEM88 may be used as a molecular marker of HCC, which can be used on clinical and predict the prognosis of the patient.

Full-text
Please download the PDF version to read the full text: download
References

1.Bertuccio P, Turati F, Carioli G, et al. Global trends and predictions in hepatocellular carcinoma mortality[J]. J Hepatol, 2017, 67(2): 302-309. DOI: 10.1016/j.jhep.2017.03.011.

2.Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.

3.Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.

4.Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases[J]. Hepatology, 2018, 68(2): 723-750. DOI: 10.1002/hep.29913.

5.Huang X, Wang H, Xu F, et al. Overexpression of chaperonin containing TCP1 subunit 7 has diagnostic and prognostic value for hepatocellular carcinoma[J]. Aging (Albany NY), 2022, 14(2): 747-769. DOI: 10.18632/aging.203809.

6.Wang H, Xu F, Lu L, et al. The diagnostic and prognostic 23 significance of small nuclear ribonucleoprotein Sm D1 aberrantly high expression in hepatocellular carcinoma[J]. J Cancer, 2022, 13(1): 184-201. DOI: 10.7150/jca.65225.

7.Wang H, Xu F, Yang F, et al. Prognostic significance and oncogene function of cathepsin A in hepatocellular carcinoma[J]. Sci Rep, 2021, 11(1): 14611. DOI: 10.1038/s41598-021-93998-9.

8.Lee HJ, Finkelstein D, Li X, et al. Identification of transmembrane protein 88 (TMEM88) as a dishevelled-binding protein[J]. J Biol Chem, 2010, 285(53): 41549-41556. DOI: 10.1074/jbc.M110.193383.

9.Palpant NJ, Pabon L, Rabinowitz JS, et al. Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development[J]. Development, 2013, 140(18): 3799-3808. DOI: 10.1242/dev.094789.

10.Zhao H, Lu F, Cui S, et al. TMEM88 inhibits extracellular matrix expression in keloid fibroblasts[J]. Biomed Pharmacother, 2017, 95: 1436-1440. DOI: 10.1016/j.biopha.2017.09.047.

11.Xu T, Pan LX, Ge YX, et al. TMEM88 mediates inflammatory cytokines secretion by regulating JNK/P38 and canonical Wnt/β-catenin signaling pathway in LX-2 cells[J]. Inflammopharmacology, 2018, 26(5): 1339-1348. DOI: 10.1007/s10787-017-0419-z.

12.Cai SP, Cheng XY, Chen PJ, et al. Transmembrane protein 88 attenuates liver fibrosis by promoting apoptosis and reversion of activated hepatic stellate cells[J]. Mol Immunol, 2016, 80: 58-67. DOI: 10.1016/j.molimm.2016.11.002.

13.Ge YX, Wang CH, Hu FY, et al. New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway[J]. J Cell Physiol, 2018, 233(1): 79-87. DOI: 10.1002/jcp.25853.

14.Zhang X, Yu X, Jiang G, et al. Cytosolic TMEM88 promotes invasion and metastasis in lung cancer cells by binding DVLS[J]. Cancer Res, 2015, 75(21): 4527-4537. DOI: 10.1158/0008-5472.CAN-14-3828.

15.Yu X, Zhang X, Zhang Y, et al. Cytosolic TMEM88 promotes triple-negative breast cancer by interacting with Dvl[J]. Oncotarget, 2015, 6(28): 25034-25045. DOI: 10.18632/oncotarget.4379.

16.Ma R, Feng N, Yu X, et al. Promoter methylation of Wnt/β-catenin signal inhibitor TMEM88 is associated with unfavorable prognosis of non-small cell lung cancer[J]. Cancer Biol Med, 2017, 14(4): 377-386. DOI: 10.20892/j.issn.2095-3941.2017.0061.

17.Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation[J]. J Med Internet Res, 2021, 23(7): e27633. DOI: 10.2196/27633.

18.Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21): e108-e110. DOI: 10.1158/0008-5472.CAN-17-0307.

19.Li B, Severson E, Pignon JC, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy[J]. Genome Biol, 2016, 17(1): 174. DOI: 10.1186/s13059-016-1028-7.

20.Danaher P, Warren S, Dennis L, et al. Gene expression markers of tumor infiltrating leukocytes[J]. J Immunother Cancer, 2017, 5: 18. DOI: 10.1186/s40425-017-0215-8.

21.Sousa S, Määttä J. The role of tumour-associated macrophages in bone metastasis[J]. J Bone Oncol, 2016, 5(3): 135-138. DOI: 10.1016/j.jbo.2016.03.004.

22.Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102. DOI: 10.1093/nar/gkx247.

23.Chandrashekar DS, Karthikeyan SK, Korla PK, et al. UALCAN: an update to the integrated cancer data analysis platform[J]. Neoplasia, 2022, 25: 18-27. DOI: 10.1016/j.neo.2022.01.001.

24.Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses[J]. Neoplasia, 2017, 19(8): 649-658. DOI: 10.1016/j.neo.2017.05.002.

25.Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612. DOI: 10.1093/nar/gkaa1074.

26.Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[J]. Sci Signal, 2013, 6(269): pl1. DOI: 10.1126/scisignal.2004088.

27.Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5): 401-404. DOI: 10.1158/2159-8290.CD-12-0095.

28.Jang JS, Jeon HS, Sun Z, et al. Increased miR-708 expression in NSCLC and its association with poor survival in lung adenocarcinoma from never smokers[J]. Clin Cancer Res, 2012, 18(13): 3658-3667. DOI: 10.1158/1078-0432.CCR-11-2857.

29.Geng Q, Chen X, Chen N. Transmembrane protein 88 exerts a tumor-inhibitory role in thyroid cancer through restriction of Wnt/β-catenin signaling[J]. Exp Cell Res, 2020, 395(2): 112193. DOI: 10.1016/j.yexcr.2020.112193.

30.Manka P, Zeller A, Syn WK. Fibrosis in chronic liver disease: an update on diagnostic and treatment modalities[J]. Drugs, 2019, 79(9): 903- 927. DOI: 10.1007/s40265-019-01126-9.

31.Liu H, Zhang S, Xu S, et al. Myofibroblast-specific YY1 promotes liver fibrosis[J]. Biochem Biophys Res Commun, 2019, 514(3): 913-918. DOI: 10.1016/j.bbrc.2019.05.004.

32.Prestigiacomo V, Weston A, Messner S, et al. Pro-fibrotic compounds induce stellate cell activation, ECM-remodelling and Nrf2 activation in a human 3D-multicellular model of liver fibrosis[J]. PLoS One, 2017, 12(6): e0179995. DOI: 10.1371/journal.pone.0179995.

33.Ahmadzadeh A, Norozi F, Shahrabi S, et al. Wnt/β-catenin signaling in bone marrow niche[J]. Cell Tissue Res, 2016, 363(2): 321-335. DOI: 10.1007/s00441-015-2300-y.

34.Tokunaga Y, Osawa Y, Ohtsuki T, et al. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model[J]. Sci Rep, 2017, 7(1): 325. DOI: 10.1038/s41598-017-00282-w.

35.Xu T, Pan L, Li L, et al. MicroRNA-708 modulates Hepatic Stellate Cells activation and enhances extracellular matrix accumulation via direct targeting TMEM88[J]. J Cell Mol Med, 2020, 24(13): 7127-7140. DOI: 10.1111/jcmm.15119.

36.Zhou H, Zhu X, Yao Y, et al. TMEM88 modulates lipid synthesis and metabolism cytokine by regulating Wnt/β-catenin signaling pathway in non-alcoholic fatty liver disease[J]. Front Pharmacol, 2022, 12: 798735. DOI: 10.3389/fphar.2021.798735.

37.Gu Y, Li X, Bi Y, Zheng Y, et al. CCL14 is a prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma[J]. Aging (Albany NY), 2020, 12(1): 784-807. DOI: 10.18632/aging.102656.

Popular papers
Last 6 months