欢迎访问中南医学期刊社系列期刊网站!

首页 在线期刊 2024年 第37卷,第4期 详情

中药有效成分干预运动性骨骼肌损伤的作用机制研究进展

发表时间:2024年04月28日阅读:252次 下载:130次 下载 手机版

作者: 张碧峰 1 刘建军 1 安文博 1 元宝华 2 刘晓婷 2

作者单位: 1. 甘肃中医药大学附属医院骨科(兰州 730000) 2. 甘肃中医药大学中医临床学院(兰州 730000)

关键词: 运动性骨骼肌损伤 中药有效成分 氧化应激 线粒体 信号通路

DOI: 10.12173/j.issn.1004-4337.202312176

引用格式: 张碧峰, 刘建军, 安文博, 元宝华, 刘晓婷. 中药有效成分干预运动性骨骼肌损伤的作用机制研究进展[J]. 数理医药学杂志, 2024, 37(4): 303-312. DOI: 10.12173/j.issn.1004-4337.202312176

Zhang BF, Liu JJ, An WB, Yuan BH, Liu XT. Research progress on the mechanism of effective components of traditional Chinese medicine in the intervention of exercise-induced skeletal muscle damage[J]. Journal of Mathematical Medicine, 2024, 37(4): 303-312. DOI: 10.12173/j.issn.1004-4337.202312176[Article in Chinese]

摘要| Abstract

运动性骨骼肌损伤(exercise-induced skeletal muscle damage, EIMD)属于运动医学科高发病率疾患之一,对患者日常生活和工作有较大影响。研究表明,中药有效成分包括皂苷类、多酚类、多糖类、黄酮类及其他异硫氰酸酯类、苯丙素类、羧酸类等活性物质可抑制实验动物及临床观察患者的炎症反应、氧化应激和线粒体自噬,促进肌卫星细胞增殖分化,调控核红细胞2相关因子2(nuclear factor erythroid-2 related factor 2, Nrf2)/血红素氧合酶1(heme oxygenase-1, HO-1)、磷脂酰肌醇-3激酶(phosphatidylinositol 3-kinase, PI3K)/蛋白激酶B(protein kinase B, PKB/Akt)、磷酸化38丝裂原活化蛋白激酶(phosphorylation mitogen 38-activated protein kinase, p38 MAPK)等相关信号通路,促使受损的骨骼肌组织修复并加速修复进程。中药历史悠久,具有副作用小、多治疗靶点及价格实惠等优势,在EIMD的治疗中具有极大的潜力和应用前景。本文就近年来关于中药有效成分治疗EIMD的作用机制做一综述,以期为EIMD治疗和康复提供参考和依据。

全文| Full-text

长时间体力活动或高强度剧烈活动可诱发自由基生成、炎症反应、激素水平波动甚至骨骼肌质膜破坏等一系列生化变化,从而导致运动性骨骼肌损伤(exercise-induced skeletal muscle damage, EIMD)[1]。EIMD发生率约占运动医学损伤的10%~55%[2],对于体育运动爱好者及专业运动员的成绩表现及肌肉损伤后竞技状态恢复情况具有重要影响,并且严重影响体力劳动者的工作和生活。本文就近年来关于中药有效成分治疗EIMD的作用机制做一综述,以期为EIMD治疗和康复提供参考和依据。

1 EIMD概述

EIMD是指宏观和微观结构水平上的肌肉纤维发生了物理损伤,涉及肌节、细胞膜和结缔组织,多表现为暂时性肌肉功能损害,如力量产生能力下降、活动度缩小、患肢肿胀、僵硬增加和肌肉疼痛[3]。影响EIMD发生的因素较多,包括离心肌收缩、运动强度、运动期间募集的骨骼肌纤维类型、肌肉收缩速度和运动期间关节活动度等[4]。

EIMD在中医学上属于“筋伤”范畴,病机多为经筋扭挫致气滞血瘀、脉络不通,治疗以活血化瘀、舒筋活络为主,临床常用消肿止痛、活血化瘀的方药[5]。中药治疗EIMD具有价格实惠、治疗靶点多、疗效明显、副作用小等特点[6]。研究表明,随着中药成分的分离、提纯及合成等技术的快速发展,中药有效成分逐渐被多靶点、多途径应用,为指导EIMD临床用药提供了参考和方向[7]。

2 中药有效成分促EIMD修复机制及参与调控的通路

皂苷类、多酚类、多糖类、黄酮类等中药有效成分可以抑制受损骨骼肌组织的炎症及氧化应激(oxidative stress, OS)反应,干预线粒体自噬,促进肌卫星细胞(muscle satellite cells, SCs)增殖分化,调控相关信号通路,缓解骨骼肌受损状态,促进受损骨骼肌组织修复。中药有效成分治疗EIMD的概况见表1。

  • 表格1 中药有效成分治疗EIMD
    Table 1.Active components of traditional Chinese medicine in the treatment of EIMD

2.1 多酚类

刺梨果中的有效成分刺梨果粉属多酚类物质,可以提高骨骼肌损伤模型大鼠机体内谷胱甘肽(glutathione, GSH)浓度及超氧化物歧化酶(superoxide dismutase, SOD)活性,上调核红细胞2相关因子2(nuclear factor erythroid-2 related factor 2, Nrf2)、血红素氧合酶1(heme oxygenase-1, HO-1)、抗凋亡因子B淋巴细胞瘤-2(B-cell lymphoma-2, Bcl-2)表达,降低Bcl-2相关X蛋白(Bax)、丙二醛(malondialdehyde, MDA)水平,通过激活抗氧化基因,减少活性氧(reactive oxygen species, ROS)导致的细胞损伤,调控Bcl-2表达以减轻细胞凋亡,使细胞处于稳定状态,提示刺梨果粉可介导Nrf2信号通路,有效增加抗氧化能力,保护骨骼肌减缓骨骼肌损伤[8, 32]。

白藜芦醇从中草药虎杖中提取而来,属多酚类化合物。炎症反应可影响受损肌肉的修复进程,超量运动导致的肌肉受损会造成肌原纤维结构破坏、肌纤维节段性坏死和肌膜稳定性降低,中性粒细胞和巨噬细胞等免疫细胞在肌肉组织受损后被激活,巨噬细胞可影响炎症和急性损伤愈合反应的特化细胞[33-34]。在此过程中,部分巨噬细胞向M1型极化吞噬坏死纤维并释放大量促炎细胞因子,激发促肌信号传导和多个细胞内信号级联;另一部分巨噬细胞则向M2型极化,减轻炎症反应,避免过度的组织损伤,同时分泌高水平的胰岛素样生长因子-1(insulin-like growth factor-1, IGF-1)支持肌肉修复,促进骨骼肌细胞增殖分化,加速肌源分化进程[35-36]。白藜芦醇可促使肥胖骨骼肌损伤大鼠机体中巨噬细胞向M2方向极化,并降低M1促炎细胞因子白细胞介素-1β(interleukin-1β, IL-1β)、白细胞介素-6(interleukin-6, IL-6)及肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)表达,抑制炎症并促进受损骨骼肌修复[9]。

2.2 黄酮类

柚皮素从中药枳实、陈皮中提取而来,属黄酮类物质。柚皮素可使骨骼肌损伤模型大鼠肌源性分化的标志物Pax7、肌肉转录调节因子(myogenic determination, MyoD)、成肌分化抗原mRNA、M2型巨噬细胞、SCs数量增多,降低M1型巨噬细胞、腓肠肌Ⅰ型胶原、Ⅲ型胶原水平,M2型巨噬细胞能够损伤修复并促进SCs这一类骨骼肌干细胞增殖分化,因此,柚皮素可以通过巨噬细胞发生M2型极化从而促进SCs增殖分化的方式,加快损伤骨骼肌的修复过程[10, 37-38]。

超负荷运动会诱导大量ROS产生,ROS在维持细胞稳态方面起着重要作用,它们在各种代谢途径中充当细胞信号传导因子,然而持续高水平的ROS可能导致氧化还原平衡向OS转变[39]。辣木叶提取物中多种活性成分属黄酮类,可降低力竭低氧运动小鼠骨骼肌组织中半胱氨酸天冬氨酸蛋白酶3(cysteinyl aspartate specific proteinase-3, caspase-3)含量,增加小鼠机体内GSH、谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)和SOD表达水平,降低ROS及MDA含量,增加机体抗氧化和清除自由基的能力,降低脂质过氧化,减轻OS反应[11]。毛竹叶中分离的木犀草素-6-C-新橙皮苷可促进糖原合成,降低肌酸激酶(creatine kinase, CK)、乳酸脱氢酶(lactic dehydrogenase, LDH)、IL-1β、TNF-α、IL-6、MDA、干扰素调节因子4(interferon regulatory factor 4, IRF4)水平,提高SOD活性,从而增强抗氧化能力,抑制OS反应,促进损伤肌肉修复再生[12, 40]。

中药竹叶提取物荭草苷可以降低EIMD模型大鼠的IL-1β、IL-6、TNF-α、p-p38MAPK和MDA水平,降低炎症反应,保护骨骼肌减轻损伤[13]。在中药桑葚、山楂、黑枸杞中均发现有低聚原花青素成分,可降低p38 MAPK和p-p38 MAPK表达,下调EIMD模型大鼠血清中CK、LDH及MDA水平,改善大鼠骨骼肌超微结构[14]。连翘提取物可促进GSH-Px和SOD的活性,降低LDH、MDA表达,抑制OS反应,增强抗氧化能力以减轻肌肉损伤[15]。中药葛根有效成分葛根黄酮,通过降低EIMD模型大鼠CK、LDH、MDA、p38 MAPK表达,提高SOD和GSH-Px活性,保护受损肌肉[16]。

EIMD可导致骨骼肌细胞的线粒体遭到破坏,引起线粒体应激,并通过线粒体自噬途径使已经受损的线粒体从健康骨骼肌细胞中消除,防止受损线粒体聚积,继而保护细胞能量代谢,最大限度地减少细胞损伤并保持体内能量代谢平衡[41]。槲皮素是中药高良姜、桑寄生提取物之一,可提高肌肉损伤模型FOXO3a、B淋巴细胞瘤-2基因/腺病毒E1B相互作用蛋白3(B-cell lymphoma-2/adenovirus E1 B interacting protein 3, Bnip3)和腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase, AMPK)表达,抑制ROS和OS水平,激活AMPK通路,促进FOXO3a-Bnip3介导的线粒体自噬,进而抑制炎症反应保护受损肌肉组织[17, 42]。漆黄素又称为非瑟酮,属于天然的黄酮类膳食,广泛存在于草莓、柿子、黄瓜等水果、蔬菜中。漆黄素可降低力竭运动大鼠骨骼肌血清中IL-1β、IL-6和TNF-α表达水平,抑制炎症反应,增加SOD和过氧化氢酶(catalase, CAT)水平,随着漆黄素剂量依赖性增加,下调MDA表达,减轻OS反应。同时,漆黄素可激活骨骼肌线粒体酶的活性,改善线粒体呼吸功能,促进线粒体生物发生,有利于维护骨骼肌健康和线粒体功能的长久发展[18]。

2.3 皂苷类

运动可以通过自噬溶酶体复合物清除受损的线粒体,然而长时间高强度运动可能引发骨骼肌线粒体过度自噬[43]。PTEN诱导假定激酶1(PTEN-induced putative kinase 1, PINK1)/ E3泛素连接酶(Parkin)信号通路是最典型的线粒体自噬机制,PINK1位于线粒体外膜(outer mitochondrial membrane, OMM)中,当OMM的完整性受损时,PINK1大量累积,继而泛素化直接或间接使Parkin蛋白磷酸化,高度活化的Parkin蛋白可以用泛素标记多种OMM蛋白,使它们随后可以与自噬体相关蛋白相互作用,从而介导线粒体自噬的发生[44-45]。红景天可降低运动肌肉损伤小鼠机体内PINK1、Parkin mRNA及相关蛋白表达,通过调控PINK1/Parkin信号通路抑制线粒体自噬,改善受损肌肉的微观结构,增加SOD和CAT的活性,减轻OS反应,促进肌肉组织修复[19]。

黄芪甲苷是中药黄芪的主要有效成分,具有抗炎、抗氧化等作用。黄芪甲苷可减少骨骼肌损伤患者血清中LDH、CK和肌酸激酶同工酶(creatine kinase-MB, CK-MB)水平,抑制TNF-α及IL-1表达,释放胰岛素样生长因子-2(insulin-like growth factor-2, IGF-2)水平,缩短EIMD炎症水平的持续时间,加速损伤肌肉再生[20]。PI3K/Akt/mTOR通路可以加速细胞代谢周期、抑制细胞凋亡和促进细胞迁移,在血管生成、肿瘤迁移、软骨细胞代谢和骨骼肌再生方面具有重要作用[46]。黄芪甲苷可提高PI3K、磷酸化蛋白激酶B(p-Akt)和mTOR表达,通过调控PI3K/Akt/mTOR通路,抑制骨骼肌细胞凋亡,降低EIMD模型大鼠LDH、CK、MDA、caspase-3 mRNA、Bax表达水平,提高CAT、SOD、Bcl-2 mRNA表达,增强抗氧化能力,减轻OS反应,有效保护骨骼肌[21]。

中药虎杖中含有的皂苷类有效成分虎杖苷,可调控p38 MAPK信号通路,降低EIMD模型大鼠TNF-α、IL-6、MDA、p-p38 MAPK表达,抑制OS及炎症反应[22]。p38 MAPK信号通路是一条经典的信号通路,常被炎症和缺氧激活,活化的p38进入细胞核或转移到其他部位,进而激活转录因子或细胞蛋白激酶等,协调细胞对多种压力的反应,控制特定细胞的增殖、分化、存活和迁移等[46]。

2.4 多糖类

黑灵芝中的提取物黑灵芝多糖可以提高骨骼肌损伤机体中的SOD、CAT和GSH-Px水平,降低MDA水平,增加肝糖原和肌糖原含量[23]。香菇中含有的多糖类物质香菇多糖,可降低骨骼肌损伤模型大鼠LDH、CK水平,增强抗氧化及清除自由基的能力,减轻OS损伤[24]。中药草珊瑚具有清热凉血、活血通络的功效,草珊瑚多糖是其主要有效水溶性成分,可降低EIMD模型大鼠血清中LDH、CK、TNF-α、IL-1β、白细胞介素-18(interleukin-18, IL-18)的表达,骨骼肌纤维结构得到一定程度的修复改善,提示草珊瑚多糖可以抑制相关炎性因子的表达,减轻局部骨骼肌疼痛,对EIMD具有良好的改善效果[25, 47]。虽然局部炎症信号的短暂增加被认为是骨骼肌修复和重塑的重要过程,但肌内炎症的慢性持续可能延长恢复期并导致骨骼肌适应不良,因此,避免长时间肌内炎症可以缓解肌肉损伤症状,从而及时促进肌肉再生,更快地恢复骨骼肌组织超微结构[48]。

2.5 其他

因大量运动产生的自由基通过脂质过氧化破坏细胞和线粒体,可抑制三磷酸腺苷(adenosine triphosphate, ATP)的合成,花生低聚肽可缓解这一现象[49]。MDA是脂质过氧化过程中导致生物膜系统损伤的关键因素,是评估OS损伤的重要指标之一[50]。花生低聚肽可提高腓肠肌中血清SOD水平,促进线粒体中抗氧化酶生成,降低CK、LDH、MDA含量,清除体内积累的代谢物质[26]。萝卜硫素是西兰花的主要有效成分,属异硫氰酸酯类化合物,可明显减轻运动肌肉损伤模型小鼠的骨骼肌损伤,降低小鼠Lc3-Ⅱ、p62、ubiquitin、PINK1、Parkin、PINK1 mRNA和Parkin mRNA的表达,通过调控PINK1/Parkin信号通路抑制线粒体自噬,减轻骨骼肌损伤并促进其修复再生[27]。中药牡蛎、紫菜、海藻提取的有效成分虾青素属萜烯类物质,通过调控Nrf2信号通路降低骨骼肌损伤模型大鼠CK、LDH、Bax、MDA水平,提高Bcl-2、SOD、Nrf2、HO-1表达,抑制OS,减少细胞凋亡,进而保护大鼠骨骼肌[28]。毛蕊花糖苷是从洋丁香中分离并提取的苯丙素化合物,具有抗氧化和抗疲劳作用,可通过降低骨骼肌损伤模型大鼠CK、天门冬氨酸氨基转移酶 (aspartate aminotransferase, AST)、MDA和丙氨酸氨基转移酶(alanine aminotransferase,ALT)水平,提高骨骼肌中SOD和CAT的水平,从而减少OS并增加抗氧化能力来减轻骨骼肌损伤[29]。芥子酸是中药芥子的有效成分,属羧酸类化合物,具有保护肌肉、抗氧化、抗炎等作用,可明显提高EIMD模型大鼠体内HO-1、Nrf2、NADPH醌氧化还原酶-1(NADPH quinone oxidoreductase-1, NQO-1)蛋白含量,激活Nrf2/HO-1信号通路,上调SOD和CAT水平,抑制MDA表达,增强线粒体的保护功能,减轻大鼠骨骼肌的OS损伤,有效防治EIMD[30]。胡椒碱是主要从胡椒中提取的桂皮酰胺类活性物质,具有抗氧化、抗炎等作用。胡椒碱可提高EIMD大鼠机体内SOD和CAT表达,降低MDA水平,抑制OS反应,同时刺激p-PI3K/PI3K和p-AKT/AKT蛋白表达,激活PI3K/AKT信号通路,发挥正向调节作用,降低血清CK含量,改善肌肉损伤,增强对骨骼肌的保护作用[31]。

3 小结

EIMD的相关机制尚未明确,涉及多个生理和病理反应,使得EIMD的治疗和快速康复难度加大。EIMD的治疗关乎人们的日常工作和生活,并对专业运动员的损伤恢复和运动成绩提高有重要影响。研究发现,中药有效成分可以促进受损的骨骼肌组织逐渐修复,抑制炎症反应、OS反应和线粒体自噬,促进SCs增殖分化,调控相关信号通路。经实验或临床应用验证,中药有效成分治疗EIMD疗效明确,具有价格实惠、治疗靶点多、疗效明显、副作用小等特点,在后续康复中具有极大的应用价值和潜力。

尽管中药有效成分治疗EIMD具有明显优势,但仍有不足之处:目前中药防治EIMD的相关研究相对较少,且多集中于体外实验;尽管大多中药有效成分在相关体内外实验中表现出EIMD治疗潜力,但其具体治疗靶点尚不明确,作用机制尚未完全揭示,仍需在现有研究基础上进一步探索。

未来可利用生物信息学、网络药理学、分子对接等技术明确中药有效成分的具体靶点和作用机制,将相应研究结果逐步转化为临床治疗手段,补充中药治疗EIMD的基础理论,丰富中药治疗EIMD相关药剂类型,从而为EIMD的临床治疗提供更多理论依据和治疗选择。

参考文献| References

1.Allard NAE, Janssen L, Lagerwaard B, et al. Prolonged moderate-intensity exercise does not increase muscle injury markers in symptomatic or asymptomatic statin users[J]. J Am Coll Cardiol, 2023, 81(14): 1353-1364. DOI: 10.1016/j.jacc.2023.01.043.

2.D'amico A, Cavarretta E, Fossati C, et al. Platelet activation favours NOX2-mediated muscle damage in elite athletes: the role of cocoa-derived polyphenols[J]. Nutrients, 2022, 14(8): 1558. DOI: 10.3390/nu14081558.

3.Caldas LC, Salgueiro RB, Clarke ND, et al. Effect of caffeine ingestion on indirect markers of exercise-induced muscle damage: a systematic review of human trials[J]. Nutrients, 2022, 14(9): 1769. DOI: 10.3390/nu14091769.

4.Curty VM, Zovico PVC, Salgueiro RB, et al. Blood flow restriction attenuates muscle damage in resistance exercise performed until concentric muscle failure[J]. Int J Exerc Sci, 2023, 16(2): 469-481. https://pubmed.ncbi.nlm.nih.gov/37124449/.

5.黄博, 阮磊, 王兰兰, 等. 推拿治疗骨骼肌损伤的分子生物学机制研究进展[J]. 湖南中医药大学学报, 2023, 43(4): 753-758. [Huang B, Ruan L, Wang LL, et al. Research progress on the molecular biological mechanism of tuina in treating skeletal muscle injury[J]. Journal of Traditional Chinese Medicine University of Hunan, 2023, 43(4): 753-758.] DOI: 10.3969/j.issn.1674-070X.2023.04.029.

6.华晓琼, 李彦杰, 张淑芹, 等. 中医药调控脊髓损伤后肢体痉挛状态的机制及研究进展[J]. 中国老年学 杂志, 2023, 43(7): 1779-1782. [Hua XQ, Li YJ, Zhang SQ, et al. Mechanism and research progress of traditional Chinese medicine in regulating limb spasticity after spinal cord injury[J]. Chinese Journal of Gerontology, 2023, 43(7): 1779-1782.] DOI: 10.3969/j.issn.1005-9202.2023.07.061.

7.杜海涛, 王琳, 丁洁, 等. 分子对接在中药开发的应用现状与挑战[J/OL]. 中国中药杂志: 1-11. (2023- 10-17) [Du HT, Wang L, Ding J, et al. Application status and challenges of molecular docking in the development of traditional Chinese medicine[J/OL]. China Journal of Chinese Materia Medica: 1-11. (2023-10-17)] https://doi.org/10.19540/j.cnki.cjcmm.20231013.703.

8.张帅军, 唐月梅, 张大鼎, 等. 刺梨果粉缓解过度训练大鼠骨骼肌氧化应激损伤效果的研究[J]. 食品工业科技, 2022, 43(12): 338-346. [Zhang SJ, Tang YM, Zhang  DD, et al. Effect of rosa roxburghii tratt powder on alleviating oxidative stress injury of skeletal muscle in overtrained rat[J]. Science and Technology of Food Industry, 2022, 43(12): 338-346.] DOI: 10.13386/j.issn1002-0306.2021090352.

9.Shabani M, Sadeghi A, Hosseini H, et al. Resveratrol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage polarization and increasing the regulatory T cell population[J]. Sci Rep, 2020, 10(1): 3791. DOI: 10.1038/s41598-020-60185-1.

10.徐明奎, 许日明, 林业武, 等. 柚皮素调控巨噬细胞极化和肌卫星细胞增殖修复骨骼肌损伤[J]. 中国组织工程研究, 2023, 27(14): 2133-2138. [Xu MK, Xu RM, Lin YW, et al. Naringenin repairs skeletal muscle injury by regulating polarization of macrophages and proliferation of muscle satellite cells[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(14): 2133-2138.] https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjMxMjI2Eg14ZGtmMjAyMzE0MDAzGgh0dXprZmgxMg%3D%3D.

11.常燕云, 朱云峰, 边祥雨, 等. 高原低氧环境下辣木叶提取物对小鼠抗疲劳的作用及其机制[J/OL]. 营养学报: 1-11. (2024-01-23). [Chang YY, Zhu YF, Bian XY, et al. Anti-fatigue effect of Moringa oleifera leaves extract and mechanism explore under highland hypoxia environment[J/OL]. Acta Nutrimenta Sinica: 1-11. (2024-01-23)] https://link.cnki.net/urlid/12.1074.r.20240118.1442.002.

12.夏庚, 韩芸. 毛竹木犀草素-6-C-新橙皮苷通过调节IRF4PTG糖原途径促进力竭运动小鼠的糖原合成[J]. 分子植物育种, 2022, 20(15): 5143-5149. [Xia G, Han Y. Mao bamboo LN promotes glycogen synthesis in exhaustive exercise mice by regulating the IRF4PTG glycogen pathway[J]. Molecular Plant Breeding, 2022, 20(15): 5143-5149.] DOI: 10.13271/j.mpb.020.005143.

13.袁书立. 竹叶黄酮活性物质对运动性骨骼肌损伤大鼠的干预作用及机制[J]. 分子植物育种, 2023, 21(6): 2045-2050. [Yuan SL. Intervention effect and mechanism of bamboo leaf flavonoids on exercise-induced skeletal muscle injury in rats[J]. Molecular Plant Breeding, 2023, 21(6): 2045-2050.] DOI: 10.13271/j.mpb.021.002045.

14.周海涛, 曹建民, 胡戈, 等. 低聚原花青素对过度训练大鼠骨骼肌损伤的保护作用机制[J]. 生命科学研究, 2021, 25(1): 24-30. [Zhou HT, Cao JM, Hu G, et al. Protective effect of oligomerized proanthocyanidins on skeletal muscle injury in overtraining rats[J]. Life Science Research, 2021, 25(1): 24-30.] DOI: 10.16605/j.cnki.1007-7847.2020.01.0112.

15.陈诚. 连翘提取物可有效缓解力竭运动导致的骨骼肌组织氧化损伤[J]. 基因组学与应用生物学, 2018, 37(1): 53-58. [Chen C. Effective relief of forsythia suspensa extract in the skeletal muscle oxidative injury by acute exhaustive exercise[J]. Genomics and Applied Biology, 2018, 37(1): 53-58.] DOI: 10.13417/j.gab.037.000053.

16.朱晓东. 葛根黄酮对大强度运动大鼠骨骼肌氧化应激损伤的保护作用及其机制研究[J]. 美食研究, 2020, 37(3): 78-82. [Zhu XD. Protective effect of pueraria flavonoids on oxidative stress injury of skeletal muscle in high-intensity exercise rats and its mechanism[J]. Journal of Researches on Dietetic Science and Culture, 2020, 37(3): 78-82.] DOI: 10.3969/j.issn.1009-4717.2020.03.015.

17.马玉珍,舒田,潘子君,等.槲皮素促进大鼠离心运动后骨骼肌线粒体自噬相关蛋白的表达[J].武警后勤学院学报(医学版), 2018, 27(6): 477-480. [Ma YZ, Shu T, Pan  ZJ, et al. Quercetin elevates the expression of mitochondrial autophagy related proteins in rat skeletal muscle after eccentric exercise[J]. Journal of Logistics University of PAP (Medical Sciences), 2018, 27(6): 477-480.] DOI: 10.16548/j.2095-3720.2018.06.004.

18.郭涛, 贾新会. 漆黄素对力竭运动大鼠骨骼肌细胞凋亡和线粒体功能的影响[J]. 分子植物育种, 2024, 22(4): 1281-1289. [Guo T, Jia XH. Effects of fisetin on apoptosis and mitochondrial function of skeletal muscle cells in exhausted exercise rats[J]. Molecular Plant Breeding, 2024, 22 (4): 1281-1289.] DOI: 10.13271/j.mpb.022.001281.

19.Hou Y, Tang Y, Wang X, et al. Rhodiola Crenulata ameliorates exhaustive exercise-induced fatigue in mice by suppressing mitophagy in skeletal muscle[J]. Exp Ther Med, 2020, 20(4): 3161-3173. DOI: 10.3892/etm.2020.9072.

20.Yeh TS, Lei TH, Barnes MJ, et al. Astragalosides supplementation enhances intrinsic muscle repair capacity following eccentric exercise-induced injury[J]. Nutrients, 2022,14(20): 4339. DOI: 10.3390/nu14204339.

21.王冠锦, 赵暘. 黄芪甲苷对力竭运动致大鼠骨骼肌损伤及细胞凋亡的影响[J]. 云南农业大学学报(自然科学), 2023, 38(1): 80-86. [Wang GJ, Zhao Y.  Effects of astragaloside IV on damage and cell apoptosis of skeletal muscle induced by exhaustive exercise in rats[J]. Journal of Yunnan Agricultural University (Natural Science), 2023, 38(1): 80-86.] https://kns.cnki.net/kcms2/article/abstract?v=WVDzDAe5jxbjtMRygY5JQ-sjgen--E3dst8ENDfPk6sj_ehaDPJmVaDnordapmouyowFWWCYAxzVZt7Q_pD2jBbn3skSeo6m8Ty4G5o6DBmCaVf0708f3lJt62Rm563KWdQMqLosmcDac22we6QDSA==&uniplatform=NZKPT&language=CHS.

22.范龙. 药用植物虎杖的活性物虎杖苷对急性运动过程中骨骼肌炎症反应及氧化应激的影响[J]. 分子植物育种, 2022, 20(6): 2024-2029. [Fan L. Effects of polydatin from polygonum cuspidatum on skeletal muscle inflammation and oxidative stress during acute exercise[J]. Molecular Plant Breeding, 2022, 20(6): 2024-2029.] DOI: 10.13271/j.mpb.020.002024.

23.万利. 黑灵芝多糖提取物对力竭运动小鼠的抗疲劳作用[J]. 基因组学与应用生物学, 2020, 39(9): 4339-4344. [Wan L. Anti-fatigue effect of polysaccharide extract from ganoderma atrum on exhausted mice[J]. Genomics and Applied Biology, 2020, 39(9): 4339-4344.] DOI: 10.13417/j.gab.039.004339.

24.蔡科.香菇多糖对运动性骨骼肌损伤的恢复作用[J].中国食用菌, 2020, 39(8): 68-71. [Cai K. The recovery effect of lentinan on exercise-induced skeletal muscle injury[J]. Edible Fungi of China, 2020, 39(8): 68-71.] DOI: 10.13629/j.cnki.53-1054.2020.08.017.

25.王勇, 侯改霞, 刘艳秋. 草珊瑚粗多糖对运动性骨骼肌损伤(EIMD)的干预效果及机制[J]. 三明学院学报, 2020, 37(2): 1-9. [Wang Y, Hou GX, Liu YQ. Intervention effect and mechanism of polysaccharides of sarcandra glabra on exercise-induced muscle damage[J]. Journal of Sanming University, 2020, 37(2): 1-9.] DOI: 10.14098/j.cn35-1288/z.2020.02.001.

26.Liu R, Li Z, Yu XC, et al. The effects of peanut oligopeptides on exercise-induced fatigue in mice and its underlying mechanism[J]. Nutrients, 2023,15(7):1743. DOI: 10.3390/nu15071743.

27.国春鼎, 杨军霞, 李鹏程. 萝卜硫素通过抑制PINK1/Parkin信号通路介导的线粒体自噬减轻力竭运动诱导的骨骼肌损伤和疲劳[J]. 中国食品卫生杂志, 2022, 34(6): 1158-1165. [Guo CD, Yang JX, Li PC. Reduction effect of sulforaphane on skeletal muscle injury and fatigue induced by exhaustive exercise through inhibiting mitochondrial autophagy mediated by PINK1/Parkin signal pathway[J]. Chinese Journal of Food Hygiene, 2022, 34(6): 1158-1165.] DOI: 10.13590/j.cjfh.2022.06.006.

28.牛衍龙, 曹建民, 王祯, 等. 虾青素对大强度运动致大鼠骨骼肌氧化应激损伤及细胞凋亡的影响[J]. 营养学报, 2021, 43(3): 274-278. [Niu YL, Cao JM, Wang Z, et al. Effects of astaxanthin on oxidative stress injury and apoptosis of skeletal muscle induced by high-intensity exercise in rats[J]. Acta Nutrimenta Sinica, 2021, 43(3): 274-278.] DOI: 10.3969/j.issn.0512-7955.2021.03.012.

29.丁雨. 毛蕊花糖苷对力竭运动的骨骼肌损伤的保护作用[J]. 基因组学与应用生物学, 2020, 39(9): 4289-4294. [Ding Y. Protective effect of verbascoside on skeletal muscle injury induced by exhaustive exercise[J]. Genomics and Applied Biology, 2020, 39(9): 4289-4294.] DOI: 10.13417/j.gab.039.004289.

30.张红波. 植物源性芥子酸对运动性骨骼肌损伤大鼠骨骼肌氧化应激和线粒体功能的影响[J]. 分子植物育种, 2023, 21(24): 8227-8233. [Zhang HB. Effects of  sinapic acid on oxidative stress and mitochondrial function in skeletal muscles of rats with exercise injury[J]. Molecular Plant Breeding, 2023, 21 (24): 8227-8233.] DOI: 10.13271/j.mpb.021.008227.

31.刘东彪. 胡椒活性物质胡椒碱通过调节PI3K/AKT改善大鼠运动性骨骼肌损伤[J]. 分子植物育种, 2024, 22(5): 1654-1662. [Liu DB. Piperine in pepper, improves exercise-induced skeletal muscle damage in rats by regulating the PI3K/AKT pathway[J]. Molecular Plant Breeding, 2024, 22(5): 1654-1662.] DOI: 10.13271/j.mpb.022.001654.

32.刘军舰, 陈帅, 袁红霞, 等. 基于Nrf2信号通路探讨茵陈蒿汤对阻塞性黄疸大鼠肾氧化应激损伤的影响及其作用机制[J].临床肝胆病杂志, 2023, 39(5):  1126-1133. [Liu JJ, Chen S, Yuan HX, et al. Effects of Yinchenhao decoction on renal oxidative stress injury in rats with obstructive jaundice and its mechanism of action based on the nuclear factor erythroid 2-related factor 2 signaling pathway[J]. Journal of Clinical Hepatology, 2023, 39(5): 1126-1133.] DOI: 10.3969/j.issn.1001-5256.2023.05.019.

33.Tsao JP, Bernard JR, Tu TH, et al. Garlic supplementation attenuates cycling exercise-induced oxidative inflammation but fails to improve time trial performance in healthy adults[J]. J Int Soc Sports Nutr, 2023, 20(1): 2206809. DOI: 10.1080/15502783.2023.2206809.

34.Chazaud B. Inflammation and skeletal muscle regeneration: leave it to the macrophages![J]. Trends Immunol, 2020, 41(6): 481-492. DOI: 10.1016/j.it.2020.04.006.

35.Dong Y, Zhang X, Miao R, et al. Branched-chain amino acids promotes the repair of exercise-induced muscle damage via enhancing macrophage polarization[J]. Front Physiol, 2022, 13: 1037090. DOI: 10.3389/fphys.2022.1037090.

36.Bernard C, Zavoriti A, Pucelle Q, et al. Role of macrophages during skeletal muscle regeneration and hypertrophy-Implications for immunomodulatory strategies[J]. Physiol Rep, 2022, 10(19): e15480. DOI: 10.14814/phy2.15480.

37.Romagnoli C, Zonefrati R, Lucattelli E, et al. In vitro effects of PTH (1-84) on human skeletal muscle-derived satellite cells[J]. Biomedicines, 2023,11(4):1017. DOI: 10.3390/biomedicines11041017.

38.杨思梦, 贺庆, 石丽君, 等. Omega-3多不饱和脂肪酸对运动性骨骼肌损伤修复的促进作用及相关机制研究进展[J]. 食品科学, 2023, 44(21): 359-367. [Yang SM, He Q, Shi LJ, et al. Advances in understanding the role of Omega-3 polyunsaturated fatty acids in promoting recovery from exercise-induced muscle injury and its underlying mechanism[J]. Food Science, 2023, 44(21): 359-367.] DOI: 10.7506/spkx1002-6630-20221028-293.

39.Hung CH, Tsai MH, Wang PS, et al. Oxidative stress involves phenotype modulation of morbid soreness symptoms in fibromyalgia[J]. RMD Open, 2023, 9(1): e002741. DOI: 10.1136/rmdopen-2022- 002741.

40.Rahman FA, Quadrilatero J. Mitochondrial network remodeling: an important feature of myogenesis and skeletal muscle regeneration[J]. Cell Mol Life Sci, 2021, 78(10): 4653-4675. DOI: 10.1007/s00018-021-03807-9.

41.梁建庆, 张媛媛, 朱向东, 等. 基于AMPK-FoxO3a自噬轴探讨葛根芩连汤改善2型糖尿病db/db小鼠肝脏脂质异位蓄积的机制[J]. 中国实验方剂学杂志, 2023, 29(18): 1-7. [Liang JQ, Zhang YY, Zhu XD, et al. Mechanism of Gegen Qinliantang in improving ectopic lipid accumulation in liver of db/db mice with type 2 diabetes mellitus by regulating AMPK-FoxO3a autophagy axis[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(18): 1-7.] DOI: 10.13422/j.cnki.syfjx.20231002.

42.Chatzinikita E, Maridaki M, Palikaras K, et al. The role of mitophagy in skeletal muscle damage and regeneration[J]. Cells, 2023, 12(5): 716. DOI: 10.3390/cells12050716.

43.Sekine S. PINK1 import regulation at a crossroad of mitochondrial fate: the molecular mechanisms of PINK1 import[J]. J Biochem, 2020, 167(3): 217-224. DOI: 10.1093/jb/mvz069.

44.张格第, 刘庚鑫, 郭敏, 等. 肾衰方干预PINK1/Parkin介导的线粒体自噬治疗CKD心肌损伤的作用机制研究[J]. 中国实验动物学报, 2023, 31(5): 567-575. [Zhang GD, Liu GX, Guo M, et al. Mechanism of Shenshuai recipe in PINK1/Parkin-mediated mitochondrial autophagy for treatment of CKD myocardial injury[J]. Acta Laboratorium Animalis Scientia Sinica, 2023, 31(5): 567-575.] DOI: 10.3969/j.issn.1005-4847.2023.05.002.

45.Yang L, Dong Z, Li S, et al. ESM1 promotes angiogenesis in colorectal cancer by activating PI3K/Akt/mTOR pathway, thus accelerating tumor progression[J]. Aging (Albany NY), 2023, 15(8): 2920-2936. DOI: 10.18632/aging.204559.

46.Huang YK, Chang KC, Li CY, et al. AKR1B1 represses glioma cell proliferation through p38 MAPK-mediated Bcl-2/BAX/caspase-3 apoptotic signaling pathways[J]. Curr Issues Mol Biol, 2023, 45(4): 3391-3405. DOI: 10.3390/cimb45040222.

47.Fernández-Lázaro D, Mielgo-Ayuso J, Seco Calvo J, et al. Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: a systematic review[J]. Nutrients, 2020,12(2): 501. DOI: 10.3390/nu12020501.

48.Nosrati-Oskouie M, Aghili-Moghaddam NS, Tavakoli-Rouzbehani OM, et al. Curcumin: a dietary phytochemical for boosting exercise performance and recovery[J]. Food Sci Nutr, 2022, 10(11): 3531-3543. DOI: 10.1002/fsn3.2983.

49.Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease[J]. Nat Commun, 2020, 11(1): 102. DOI: 10.1038/s41467-019-13668-3.

50.Liu R, Hao YT, Zhu N, et al. The gastroprotective effect of small molecule oligopeptides isolated from walnut (Juglans regia L.) against ethanol-induced gastric mucosal injury in rats[J]. Nutrients, 2020, 12(4): 1138. DOI: 10.3390/nu12041138.