Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.5 Detail

Research progress on the biological function of microRNA and its correlation with ovarian cancer

Published on May. 29, 2024Total Views: 1782 times Total Downloads: 586 times Download Mobile

Author: ZHOU Yuheng 1 LI Yuetong 1 ZHANG Shuaihui 2 DENG Yuchen 1 LIU Zhongyuan 1 CHEN Baijun 1 DING Lin 1, 3

Affiliation: 1. Medical Department of Xinglin College, Nantong University, Nantong 226000, Jiangsu Province, China 2. School of Public Health, Nantong University, Nantong 226000, Jiangsu Province, China 3. General Introduction to Surgery Teaching and Research Office, Medical School of Nantong University, Nantong 226000, Jiangsu Province, China

Keywords: Ovarian cancer microRNA Drug resistance Invasion Metastasis Target

DOI: 10.12173/j.issn.1004-4337.202401119

Reference: Zhou YH, Li YT, Zhang SH, Deng YC, Liu ZY, Chen BJ, Ding L. Research progress on the biological function of microRNA and its correlation with ovarian cancer[J]. Journal of Mathematical Medicine, 2024, 37(5): 385-391. DOI: 10.12173/j.issn.1004-4337.202401119[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Ovarian cancer (OC) is one of the three common primary malignant tumors in women, which seriously endangers the reproductive health. Due to its high concealment, susceptibility to drug resistance, and susceptibility to recurrence, the prognosis of patients is poor and the mortality rate is extremely high. MicroRNA (miRNA) is a type of small molecule single stranded non coding RNA that primarily exerts gene expression regulation at the post transcriptional level by specifically inhibiting translation or degrading target mRNA. Multiple miRNAs have been confirmed to be abnormally expressed in OC and play a core role in regulating cell migration and invasion, drug resistance, angiogenesis, and tumor microenvironment.This article reviews the biological functions of miRNA and its role in OC, in order to provide references for the diagnosis, treatment, prognosis and intervention targets of OC.

Full-text
Please download the PDF version to read the full text: download
References

1.Matsuo K, Matsuzaki S, Maeda M, et al. Uptake and outcomes of neoadjuvant chemotherapy among US patients with less common epithelial ovarian carcinomas[J]. JAMA Netw Open, 2023, 6(6): e2318602. DOI: 10.1001/jamanetworkopen.2023.18602.

2.Sruthi TV, Edatt L, Raji GR, et al. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis[J]. J Cell Physiol, 2018, 233(4): 3498-3514. DOI: 10.1002/jcp.26202.

3.Dasari S, Pandhiri T, Grassi T, et al. Signals from the metastatic niche regulate early and advanced ovarian cancer metastasis through miR-4454 downregulation[J]. Mol Cancer Res, 2020, 18(8): 1202-1217. DOI: 10.1158/1541-7786.MCR-19-1162.

4.Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854. DOI: 10.1016/0092-8674(93)90529-y.

5.Pozniak T, Shcharbin D, Bryszewska M. Circulating microRNAs in medicine[J]. Int J Mol Sci, 2022, 23(7): 3996. DOI: 10.3390/IJMS23073996.

6.Zu L, He J, Zhou N, Tang Q, et al. Identification of multiple organ metastasis-associated hub mRNA/miRNA signatures in non-small cell lung cancer[J]. Cell Death Dis, 2023, 14(12): 798. DOI: 10.1038/s41419-023-06286-x.

7.Ruiz-Manriquez LM, Carrasco-Morales O, Sanchez ZEA, et al. MicroRNA-mediated regulation of key signaling pathways in hepatocellular carcinoma: a mechanistic insight[J]. Front Genet, 2022, 13: 910733. DOI: 10.3389/fgene.2022.910733.

8.Nemeth K, Bayraktar R, Ferracin M, et al. Non-coding RNAs in disease: from mechanisms to therapeutics[J]. Nat Rev Genet, 2024, 25(3): 211-232. DOI: 10.1038/s41576-023-00662-1.

9.Chen S, Chen X, Xiu YL, et al. MicroRNA-490-3P targets CDK1 and inhibits ovarian epithelial carcinoma tumorigenesis and progression[J]. Cancer Lett, 2015, 362(1): 122-130. DOI: 10.1016/j.canlet.2015.03.029.

10.Green D, Fraser WD, Dalmay T. Transfer RNA-derived small RNAs in the cancer transcriptome[J]. Pflugers Arch, 2016, 468(6): 1041-1047. DOI: 10.1007/s00424-016-1822-9.

11.Shafique R, Mahjabeen I, Bibi K, et al. miRNA-767 and its binding site polymorphism in the mTOR gene act as potential biomarkers for female reproductive cancers[J]. Future Oncol, 2023, 19(28): 1929-1943. DOI: 10.2217/fon-2022-1055.

12.Baran O, Karaoglu AC, Kara E, et al. Expression of miRNA-451 and miRNA-885 in Meningiomas[J]. In Vivo, 2023, 37(6): 2473-2479. DOI: 10.21873/invivo.13354.

13.Yang Z, Yang L, Sun Z, et al. miRNA-660-3p inhibits malignancy in glioblastoma via negative regulation of APOC1-TGFβ2 signaling pathway[J]. Cancer Biol Ther, 2023, 24(1): 2281459. DOI: 10.1080/15384047. 2023.2281459.

14.Lu XJ, Gao WW, Li JC, et al. miRNA-381 regulates renal cancer stem cell properties and sunitinib resistance via targeting SOX4[J]. Biochem Biophys Rep, 2023, 36: 101566. DOI: 10.1016/j.bbrep.2023.101566.

15.Yang L, Ma HL. MiRNA-584 suppresses the progression of ovarian cancer by negatively regulating LPIN1[J]. Eur Rev Med Pharmacol Sci, 2020, 24(3): 1062-1071. DOI: 10.26355/eurrev_202002_20156.

16.Gahlawat AW, Witte T, Sinn P, et al. Circulating cf-miRNA as a more appropriate surrogate liquid biopsy marker than cfDNA for ovarian cancer[J]. Sci Rep, 2023, 13(1): 5503. DOI: 10.1038/s41598-023-32243-x.

17.Zhao J, Liu L, Zhao W, Lv C, et al. miR-141-3p accelerates ovarian cancer progression and promotes M2-like macrophage polarization by targeting the Keap1-Nrf2 pathway[J]. Open Med (Wars), 2023, 18(1): 20230729. DOI: 10.1515/med-2023-0729.

18.Kim H, Lee JJ, Kim Y miR-323b attenuates taxol-resistance in ovarian cancer cells by targeting DDX53[J]. Biology Bulletin, 2023, 50(5): 739-748. DOI: 10.1134/S1062359023601374.

19.Sölétormos G, Duffy MJ, Hassan S, et al. Clinical use of cancer biomarkers in epithelial ovarian cancer: updated guidelines from the European Group on Tumor Markers[J]. Int J Gynecol Cancer, 2016, 26(1): 43-51. DOI: 10.1097/IGC.0000000000000586.

20.Iqbal MA, Arora S, Prakasam G, et al. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance[J]. Mol Aspects Med, 2019, 70: 3-20. DOI: 10.1016/j.mam.2018.07.003.

21.Su YY, Sun L, Guo ZR, et al. Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer[J]. J Ovarian Res, 2019, 12(1): 6. DOI: 10.1186/s13048-018-0477-x.

22.Zhou J, Gong G, Tan H, et al. Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma[J]. Oncol Rep, 2015, 33(6): 2915-2923. DOI: 10.3892/or.2015.3937.

23.Lin L, Han Q, Cai J, et al. The clinical validity of miR-126 as a prognostic marker in epithelial ovarian cancer[J]. Medicine (Baltimore), 2023, 102(9): e33085. DOI: 10.1097/MD.0000000000033085.

24.Liu J, Yoo J, Ho JY, et al. Plasma-derived exosomal miR-4732-5p is a promising noninvasive diagnostic biomarker for epithelial ovarian cancer[J]. J Ovarian Res, 2021, 14(1): 59. DOI: 10.1186/s13048-021-00814-z.

25.Hu C, Zhang L, Yang Z, et al. Graphene oxide-based qRT-PCR assay enables the sensitive and specific detection of miRNAs for the screening of ovarian cancer[J]. Anal Chim Acta, 2021, 1174: 338715. DOI: 10.1016/j.aca. 2021.338715.

26.Cui Y, Hong S, Zhu X. The accuracy of single microRNAs in peripheral blood to diagnose ovarian cancer: an updated Meta-analysis[J]. Dis Markers, 2020, 2020: 1075942. DOI: 10.1155/2020/1075942.

27.Frisk NLS, Sørensen AE, Pedersen OBV, et al. Circulating microRNAs for early diagnosis of ovarian cancer: a systematic review and Meta-analysis[J]. Biomolecules, 2023, 13(5): 871. DOI: 10.3390/biom13050871.

28.Braga EA, Fridman MV, Kushlinskii NE. Molecular mechanisms of ovarian carcinoma metastasis: key genes and regulatory microRNAs[J]. Biochemistry (Mosc), 2017, 82(5): 529-541. DOI: 10.1134/S0006297917050017.

29.Gong L, Wang C, Gao Y, et al. Decreased expression of microRNA-148a predicts poor prognosis in ovarian cancer and associates with tumor growth and metastasis[J]. Biomed Pharmacother, 2016, 83: 58-63. DOI: 10.1016/j.biopha.2016.05.049.

30.Zhu X, Shen H, Yin X, et al. miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin[J]. Oncogene, 2016, 35(3): 323-332. DOI: 10.1038/onc.2015.84.

31.Kumar P, Kumawat RK, Uttam V, et al. The imminent role of microRNAs in salivary adenoid cystic carcinoma[J]. Transl Oncol, 2023, 27: 101573. DOI: 10.1016/j.tranon. 2022.101573.

32.Hu Z, Cai M, Zhang Y, et al. miR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway[J]. Cell Cycle, 2020, 19(2): 193-206. DOI: 10.1080/15384101.2019.1704537.

33.Wuerkenbieke D, Wang J, Li Y, et al. miRNA-150 downregulation promotes pertuzumab resistance in ovarian cancer cells via AKT activation[J]. Arch Gynecol Obstet, 2015, 292(5): 1109-1116. DOI: 10.1007/s00404-015-3742-x.

34.Xiang G, Cheng Y. MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2[J]. Reprod Biol, 2018, 18(3): 218-224. DOI: 10.1016/j.repbio.2018.07.005.

35.Jin Q, Zhang N, Zhan Y, et al. MicroRNA-592 inhibits the growth of ovarian cancer cells by targeting ERBB3[J]. Technol Cancer Res Treat, 2023, 22: 15330338231157156. DOI: 10.1177/15330338231157156.

36.Jiang L, Wang H, Chen S. Aptamer (AS1411)-conjugated liposome for enhanced therapeutic efficacy of miRNA-29b in ovarian cancer[J]. J Nanosci Nanotechnol, 2020, 20(4): 2025-2031. DOI: 10.1166/jnn.2020.17301.

37.Li X, Liu Y, Zheng S, et al. Role of exosomes in the immune microenvironment of ovarian cancer[J]. Oncol Lett, 2021, 21(5): 377. DOI: 10.3892/ol.2021.12638.

38.Chen C, Liu JM, Luo YP. MicroRNAs in tumor immunity: functional regulation in tumor-associated macrophages[J]. J Zhejiang Univ Sci B, 2020, 21(1): 12-28. DOI: 10.1631/jzus.B1900452.

39.Hong W, Xue M, Jiang J, et al. Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC)[J]. J Exp Clin Cancer Res, 2020, 39(1): 149. DOI: 10.1186/s13046-020-01648-1.

40.Kanlikilicer P, Bayraktar R, Denizli M, et al. Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer[J]. EBioMedicine, 2018, 38: 100-112. DOI: 10.1016/j.ebiom.2018.11.004.

41.Li I, Nabet BY. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance[J]. Mol Cancer, 2019, 18(1): 10-32. DOI: 10.1186/s12943-019-0975-5.

42.Mehla K, Singh PK. Metabolic regulation of macrophage polarization in cancer[J]. Trends Cancer, 2019, 5(12): 822-834. DOI: 10.1016/j.trecan.2019.10.007.

43.Masoumi-Dehghi S, Babashah S, Sadeghizadeh M. microRNA-141-3p-containing small extracellular vesicles derived from epithelial ovarian cancer cells promote endothelial cell angiogenesis through activating the JAK/STAT3 and NF-κB signaling pathways[J]. J Cell Commun Signal, 2020, 14(2): 233-244. DOI: 10.1007/s12079-020-00548-5.

Popular papers
Last 6 months