Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 38,2025 No.11 Detail

The mechanism of Fuzhisan in the treatment of Alzheimer's disease based on network pharmacology and molecular docking technology

Published on Nov. 29, 2025Total Views: 121 times Total Downloads: 23 times Download Mobile

Author: CHEN Fuping TIAN Ruoshi YANG Yan HE Xirui

Affiliation: School of Bioengineering, Zunyi Medical University, Zhuhai 519041, Guangdong Province, China

Keywords: Alzheimer's disease Fuzhisan Network pharmacology Molecular docking Mechanism

DOI: 10.12173/j.issn.1004-4337.202504035

Reference: Chen FP, Tian RS, Yang Y, He XR. The mechanism of Fuzhisan in the treatment of Alzheimer's disease based on network pharmacology and molecular docking technology[J]. Journal of Mathematical Medicine, 2025, 38(11): 825-838. DOI: 10.12173/j.issn.1004-4337.202504035[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the active components, targets, and mechanisms of Fuzhisan in the treatment of Alzheimer's disease (AD).

Methods  The effective components of Fuzhisan were determined through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the related target proteins were obtained. The key targets affecting AD were predicted using the GeneCards database. The intersection targets of Fuzhisan and AD were obtained using the Venny 2.1.0 platform. The drug-component-target network was constructed using Cytoscape 3.9.1 software. The intersection targets were imported into the STRING database to construct a protein-protein interaction network and screen the key targets. The common targets of the drug and disease were analyzed for enrichment using the Metascape database. Molecular docking was performed with AutoDock 4.2.6 software for the main effective components of Fuzhisan and the key targets of AD, and the results were visualized using PyMOL 2.4.0 software.

Results  A total of 58 active components of Fuzhisan were obtained. A number of 3 652 AD related targets were obtained with a screening criterion of Score ≥ 6.8, and there were 105 intersection targets between the disease and the drug. Gene Ontology (GO) enrichment analysis showed that there were 1 468, 61 and 2 339 entries for biological process, cellular component, and molecular function, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis yielded 184 pathways. Molecular docking results indicated that the effective components of Fuzhisan, such as kaempferol, wogonin, baicalein, β-sitosterol, and stigmasterol, had good binding activity with the key targets TP53, TNF, AKT1, IL-1β, and IL-6.

Conclusion  Fuzhisan can exert therapeutic effects on AD through multiple components, multiple targets and multiple pathways.

Full-text
Please download the PDF version to read the full text: download
References

1.Alzheimer's Disease International. World Alzheimer Report 2021[EB/OL]. (2021-09-21). https://www.alzint.org/resource/world-alzheimer-report-2021/

2.王英全, 梁景宏, 贾瑞霞, 等. 2020-2050年中国阿尔茨海默病患病情况预测研究[J]. 阿尔茨海默病及相关病, 2019, 2(1): 289-298. [Wang YQ, Liang JH, Jia RX, et al. Alzheimer disease in China (2015-2050) estimated using the 1% population sampling survey in 2015[J]. Chinese Journal of Alzheimer's Disease and Related Disorders, 2019, 2(1): 289-298.] DOI: 10.3969/j.issn.2096-5516.2019.01.012.

3.夏乐旋, 谭爱华, 王平, 等. 老年痴呆历代治法演变考[J]. 中国中医基础医学杂志, 2022, 28(7): 1049-1051, 1055. [Xia  LX, Tan AH, Wang P, et al. Research on evolution of treatment methods of senile dementia in past dynasties[J]. Journal of Basic Chinese Medicine, 2022, 28(7): 1049-1051, 1055.] DOI: 10.19945/j.cnki.issn.1006-3250.2022.07.035.

4.刘莉, 王雪梅, 韩宇博, 等. 抗阿尔茨海默病的中药治疗及其作用机制研究概况[J]. 时珍国医国药, 2022, 33(10): 2477-2480. [Liu L, Wang XM, Hang YB, et al. Research progress on traditional Chinese medicine for Alzheimer's disease treatment and its underlying mechanisms[J]. Lishizhen Medicine and Materia Medica Research, 2022, 33(10): 2477-2480.] DOI: 10.3969/j.issn.1008-0805.2022.10.50.

5.张兆旭, 王德生. 复智散通过细胞周期依赖性蛋白激酶5通路减轻皮层神经元Tau蛋白过度磷酸化[J]. 中国药理学通报, 2016, 32(3): 422-426. [Zhang ZX, Wang DS. Role of Fuzhisan in reducing Tau protein hyperphosphorylation in cortical neurons through a cyclin-dependent kinase 5 pathway[J]. Chinese Pharmacological Bulletin, 2016, 32(3): 422-426.] DOI: 10.3969/j.issn.1001-1978.2016.03.024.

6.高健, 吕邵娃. 人参化学成分及药理作用研究进展[J]. 中医药导报, 2021, 27(1): 127-130, 137. [Gao J, Lyu SW. Research progress in chemical constituents and pharmacological action of Renshen[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacology, 2021, 27(1): 127-130, 137.] DOI: 10.13862/j.cnki.cn43-1446/r.2021.01.030.

7.马艳春, 吴文轩, 胡建辉, 等. 当归的化学成分及药理作用研究进展[J]. 中医药学报, 2022, 50(1): 111-114. [Ma YC, Wu  WX, Hu JH, et al. Research progress on chemical constituents and pharmacological effects of Angelica sinensis[J]. Acta Chinese Medicine and Pharmacology, 2022, 50(1): 111-114.] DOI: 10.19664/j.cnki.1002-2392.220024.

8.刘晓龙, 李春燕, 陈奇剑, 等. 黄芩主要活性成分和药理作用研究进展[J]. 新乡医学院学报, 2023, 40(10): 979-985, 990. [Liu XL, Li CY, Chen QJ, et al. Research progress on the main active ingredients and pharmacological effects of Scutellariae Radix[J]. Journal of Xinxiang Medical College, 2023, 40(10): 979-985, 990.] DOI: 10.7683/xxyxyxb.2023.10.014.

9.韩文静, 侯丽慧, 王乐, 等. 人参有效成分改善老年性记忆力减退和阿尔茨海默病的研究进展[J]. 中国老年学杂志, 2023, 43(11): 2811-2815. [Han WJ, Hou LH, Wang L, et al. Research progress on active components of Ginseng in ameliorating age-related memory decline and Alzheimer's disease[J]. Chinese Journal of Gerontology, 2023, 43(11): 2811-2815.] DOI: 10.3969/j.issn.1005-9202.2023.11.065.

10.荔淑楠, 马骏, 臧凯宏, 等. 当归藁本内酯抗老年痴呆作用研究进展[J]. 中国现代中药, 2016, 18(5): 674-677. [Li  SN, Ma J, Zang KH, et al. Advances in effect of Ligustilide of Radix Angelicae Sinensis on prevention and treatment of senile dementia[J]. Modern Chinese Medicine, 2016, 18(5): 674-677.] DOI: 10.13313/j.issn.1673-4890.2016.5.030.

11.刚宝芝, 王德生, 王春利, 等. 复智散治疗老年性痴呆的临床疗效观察[J]. 中风与神经疾病杂志, 2005, 22(6): 527-529. [Gang BZ, Wang DS, Wang CL, et al. The efficacy of Fuzhisan in patients with Alzheimer's disease[J]. Journal of Apoplexy and Nervous Diseases, 2005, 22(6): 527-529.] DOI: 10.3969/j.issn.1003-2754.2005.06.015.

12.温世荣, 王德生, 张景艳, 等. 复智散对SH-SY5Y细胞生存状态的影响[J]. 哈尔滨医科大学学报, 2003, 37(5): 383-385, 388. [Wen SR, Wang DS, Zhang JY, et al. Effect of Fuzhisan on the viability of SH-SY5Y cell[J]. Journal of Harbin Medical University, 2003, 37(5): 383-385, 388.] DOI: 10.3969/j.issn.1000-1905.2003.05.004.

13.王德生, 李绪领, 汤颍, 等. 复智散对自然老化大鼠胆碱能系统的影响[J]. 中国神经免疫学和神经病学杂志, 2008, 15(3): 201-203, 208. [Wang DS, Li XL, Tang Y, et al. Effect of Fuzhisan (FZS) on cholinergic system of aged mice[J]. Chinese Journal of Neuroimmunology and Neurology, 2008, 15(3): 201-203, 208.] DOI: 10.3969/j.issn.1006-2963.2008.03.014.

14.Hsin KY, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One, 2013, 8(12): e83922. DOI: 10.1371/journal.pone.0083922.

15.李莉, 宋琳, 安淑荣, 等. 基于网络药理学探讨金钗石斛和霍山石斛治疗阿尔茨海默病的作用机制[J]. 现代药物与临床, 2023, 38(8): 1919-1928. [Li L, Song L, Song  SR, et al. Mechanism of Dendrobium nobile and Dendrobium huoshanense in treatment of Alzheimer's disease based on network pharmacology[J]. Drugs & Clinic, 2023, 38(8): 1919-1928.] DOI: 10.7501/j.issn.1674-5515.2023.08.015.

16.徐洁, 陈竞纬. 基于网络药理学与分子对接探讨山茱萸-菟丝子治疗认知障碍的作用机制[J]. 中国中医药图书情报杂志, 2024, 48(1): 83-90. [Xu J, Chen JW. Exploring on the mechanism of Corni Fructus-Cuscutae Semen on Cognitive impairment based on network pharmacology and molecular docking[J]. Chinese Journal of Library and Information Science for Traditional Chinese Medicine, 2024, 48(1): 83-90.] DOI: 10.3969/j.issn.2095-5707.202304138.

17.Chaubey S, Singh L. Deciphering the mechanisms underlying the neuroprotective potential of kaempferol: a comprehensive investigation[J]. Naunyn Schmiedebergs Arch Pharmacol, 2025, 398(3): 2275-2292. DOI: 10.1007/s00210-024-03515-8.

18.Nejabati HR, Roshangar L. Kaempferol as a potential neuroprotector in Alzheimer's disease[J]. J Food Biochem, 2022, 46(12): e14375. DOI: 10.1111/jfbc.14375.

19.Huang DS, Yu YC, Wu CH, et al. Protective effects of wogonin against Alzheimer's disease by inhibition of amyloidogenic pathway[J]. Evid Based Complement Alternat Med, 2017, 2017: 3545169. DOI: 10.1155/2017/3545169.

20.Li Y, Zhao J, Hölscher C. Therapeutic potential of baicalein in Alzheimer's disease and Parkinson's disease[J]. CNS Drugs, 2017, 31(8): 639-652. DOI: 10.1007/s40263-017-0451-y.

21.Ye JY, Li L, Hao QM, et al. β-Sitosterol treatment attenuates cognitive deficits and prevents amyloid plaque deposition in amyloid protein precursor/presenilin 1 mice[J]. Korean J Physiol Pharmacol, 2020, 24(1): 39-46. DOI: 10.4196/kjpp.2020.24.1.39.

22.Jie F, Yang X, Yang B, et al. Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation[J]. Biomed Pharmacother, 2022, 153: 113317. DOI: 10.1016/j.biopha.2022.113317.

23.Burg VK, Grimm HS, Rothhaar TL, et al. Plant sterols the better cholesterol in Alzheimer's disease? A mechanistical study[J]. J Neurosci, 2013, 33(41): 16072-16087. DOI: 10.1523/JNEUROSCI.1506-13.2013.

24.邓华明, 肖飞, 杨丽, 等. 阿尔茨海默病炎症机制及相关药物的研究概况[J]. 广东医学, 2010, 31(16): 2170-2172. [Deng  HM, Xiao F, Yang L, et al. Research progress on inflammatory mechanisms and related therapeutics in Alzheimer's disease[J]. Guangdong Medical Journal, 2010, 31(16): 2170-2172.] DOI: 10.3969/j.issn.1001-9448.2010.16.053.

25.谢玉婷, 高雪峰, 董贵成, 等. 阿尔兹海默病致病机制及新型治疗药物研究进展[J]. 生物化工, 2018, 4(6): 116-119. [Xie YT, Gao XF, Dong GC, et al. Study on pathogenesis and new therapeutic drugs of Alzheimer disease[J]. Biological Chemical Engineering, 2018, 4(6): 116-119.] DOI: 10.3969/j.issn.2096-0387.2018.06.033.

26.Gao P, Wang Z, Lei M, et al. Daphnetin ameliorates Aβ pathogenesis via STAT3/GFAP signaling in an APP/PS1 double-transgenic mouse model of Alzheimer's disease[J]. Pharmacol Res, 2022, 180: 106227. DOI: 10.1016/j.phrs.2022.106227.

27.Heneka MT, van der Flier WM, Jessen F, et al. Neuroinflammation in Alzheimer disease[J]. Nat Rev Immunol, 2025, 25(5): 321-352. DOI: 10.1038/s41577-024-01104-7.

28.代文博, 曾亮. PI3K/Akt信号通路与阿尔茨海默病关系的研究进展[J]. 现代医药卫生, 2014(10): 1499-1501. [Dai  WB, Zeng L. Research progress on the PI3K/Akt signaling pathway in Alzheimer's disease[J]. Journal of Modern Medicine & Health, 2014(10): 1499-1501.] DOI: 10.3969/j.issn.1009-5519. 2014.10.026.

29.刘立阳. Akt/FOXO1信号通路参与阿尔茨海默病小胶质细胞细胞焦亡的机制研究[D]. 沈阳: 中国医科大学, 2023. [Liu  LY. The involvement of the Akt/FOXO1 signaling pathway in the mechanism of cellular pyroptosis of microglia in Alzheimer's disease[D]. Shenyang: China Medical University, 2023.] DOI: 10.27652/d.cnki.gzyku.2023.002082.

30.廖旗荣, 杨红岩, 卢静, 等. 胰淀素对阿尔茨海默病小鼠学习和记忆能力以及Akt信号通路的影响[J]. 陆军军医大学学报, 2024, 46(21): 2467-2474. [Liao QR, Yang HY, Lu J, et al. Effect of amylin on learning and memory abilities and Akt signaling pathway in mice with Alzheimer's disease[J]. Journal of Army Medical University, 2024, 46(21): 2467-2474.] DOI: 10.16016/j.2097-0927.202404087.

31.Pan H, Kepp O, Kroemer G. Mechanistic exploration of autophagy and aging by RNA interference[J]. Methods Cell Biol, 2024, 181: 213-226. DOI: 10.1016/bs.mcb.2023.03.003.

32.Awad HH, Desouky MA, Zidan A, et al. Neuromodulatory effect of vardenafil on aluminium chloride/D-galactose induced Alzheimer's disease in rats: emphasis on amyloid-beta, p-tau, PI3K/Akt/p53 pathway, endoplasmic reticulum stress, and cellular senescence[J]. Inflammopharmacology, 2023, 31(5): 2653-2673. DOI: 10.1007/s10787-023-01287-w.

33.李明, 李玺, 权乾坤, 等. 老年痴呆模型中人参皂苷Rg1预处理对大鼠脑片中突触素表达的影响[J]. 西部医学, 2018, 30(4): 485-488. [Li M, Li X, Quan QK, et al. Effects of Gensenoside Rg1 on the expressions of SYN in Alzheimer's disease in rat brain slices[J]. Medical Journal of West China, 2018, 30(4): 485-488.] DOI: 10.3969/j.issn.1672-3511.2018.04.004.

34.Park YH, Seo JH, Park JH, et al. Hsp70 acetylation prevents caspase-dependent/independent apoptosis and autophagic cell death in cancer cells[J]. Int J Oncol, 2017, 51(2): 573-578. DOI: 10.3892/ijo.2017.4039.

35.罗涵予. 晚期糖基化终末产物与阿尔茨海默病的关系研究进展[J]. 现代医药卫生, 2019, 35(4): 543-547. [Luo HY, Li XF. Research advances in the role of advanced glycation end products in Alzheimer's disease[J]. Journal of Modern Medicine & Health, 2019, 35(4): 543-547.] DOI: 10.3969/j.issn.1009-5519.2019.04.018.

36.舒永伟, 曲扬, 张惊宇. 炎症与阿尔茨海默病的相关性研究进展[J]. 新乡医学院学报, 2018, 35(12): 1130-1133. [Shu  YW, Qu Y, Zhang JY. Research progress on neuroinflammation in Alzheimer's disease[J]. Journal of Xinxiang Medical College, 2018, 35(12): 1130-1133.] DOI: 10.7683/xxyxyxb.2018.12.022.

37.刘佳妮, 刘剑刚, 韦云, 等. 基于网络药理学和分子对接法的益智清心方治疗阿尔茨海默病作用机制探索[J]. 中国现代中药, 2022, 24(1): 76-85. [Zhang YW, Liu JG, Wei Y, et al. Mechanism of Yizhi Qingxin formula against Alzheimer's disease based on network pharmacology and molecular docking technologies[J]. Modern Chinese Medicine, 2022, 24(1): 76-85.] DOI: 10.13313/j.issn.1673-4890.20210118008.

38.Mastroeni D, Nolz J, Sekar S, et al. Laser-captured microglia in the Alzheimer's and Parkinson's brain reveal unique regional expression profiles and suggest a potential role for hepatitis B in the Alzheimer's brain[J]. Neurobiol Aging, 2018, 63: 12-21. DOI: 10.1016/j.neurobiolaging.2017.10.019.

39.刘卫红, 赵伟光, 韩晓正. 山奈酚对阿尔茨海默病模型大鼠的治疗作用及CREB/BDNF信号通路的影响[J]. 卒中与神经疾病, 2023, 30(4): 333-337, 343. [Liu WH, Zhao WG, Han XZ. Therapeutic effects of kaempferol on rats with Alzheimer's disease and its effect on CREB/BDNF signaling pathway[J]. Stroke and Nervous Diseases, 2023, 30(4): 333-337, 343.] DOI: 10.3969/j.issn.1007-0478.2023.04.001.

40.王文潇, 卫东锋, 张占军, 等. 黄芩素对阿尔茨海默病大鼠早期脑组织蛋白表达谱的影响[J]. 中国中医药信息杂志, 2016, 23(8): 59-63. [Wang WX, Wei DF, Zhang ZJ, et al. Effects of baicalein on protein spots expression of early brain tissue of AD rats[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2016, 23(8): 59-63.] DOI: 10.3969/j.issn.1005-5304.2016.08.016.

41.张瑶, 冯天骄, 张占军, 等. 黄芩素对抗阿尔采末病及改善学习记忆能力的研究进展[J]. 中国药理学通报, 2010, 26(3): 294-297. [Zhang Y, Feng TJ, Zhang ZJ, et al. Progress in research of Baicalein affecting Alzheimer's disease and improving learning and memory of brain[J]. Chinese Pharmacological Bulletin, 2010, 26(3): 294-297.] https://d.wanfangdata.com.cn/periodical/ChVQZXJpb2RpY2FsQ0hJMjAyNTA2MjISEHpneWx4dGIyMDEwMDMwMDQaCHYyd3NlNWdp

42.刘晓明, 崔晓燕, 甄晓兰. 黄芩提取物对阿尔茨海默病模型小鼠的抗氧化作用[J]. 中国药房, 2015, 26(19): 2651-2653. [Liu XM, Cui XY, Zhen XL. Antioxidant effects of extracts from Scutellaria baicalensis on model mice with Alzheimer's disease[J]. China Pharmacy, 2015, 26(19): 2651-2653.] DOI: 10.6039/j.issn.1001-0408.2015.19.18.

43.古训瑚. 黄芩素逆转阿尔茨海默病模型小鼠突触可塑性与认知损害[D]. 南昌: 南昌大学, 2015. [Gu XH. Baicalein reverses synaptic plasticity and cognitive impairments in Alzheimer's disease mouse models[D]. Nanchang: Nanchang University, 2015.] DOI: 10.7666/d.D692321.

Popular papers
Last 6 months