Objective To explore the causal relationship between epilepsy (EP) and type 1 diabetes mellitus (T1DM) based on Mendelian randomization (MR) method, and to apply bioinformatics analysis to screen the key genes of EP and T1DM.
Methods Relevant data of EP and T1DM was obtained from the IEU Open GWAS Project database. Single nucleotide polymorphisms (SNPs) significantly associated with exposure factors were selected as instrumental variables. The inverse variance weighted (IVW) method was the main method of MR analysis, and odds ratio (OR) was adopted to analyze the causal relationship between EP and T1DM. The gene chip dataset of EP and T1DM were downloaded through the Gene Expression Omnibus (GEO) database, and common differentially genes were taken for enrichment analysis. The Cytohubba toolkit of Cytoscape software was used to obtain the genes with the top 10 Degree values and screen the key genes to explore the common mechanism of EP and T1DM.
Results The results of MR analysis showed that generalized epilepsy (GE) was a risk factor for T1DM (OR=1.173, 95%CI: 1.007-1.367, P=0.040). The results of bioinformatic analysis showed that there were 12 common differential genes between EP and T1DM, namely CD69, CXCL1, DACH1, ELANE, FOLR3, HBB, HIST2H2BE, HP, PMP22, PTGDS, SKAP1 and TAGAP. The results of Gene Ontology (GO) analysis showed that the biological process (BP) of common differential gene was mainly enriched in antimicrobial humoral immune response mediated by antimicrobial peptide, acute inflammatory response, myeloid leukocyte mediated immunity, etc.; cellular component (CC) was mainly enriched in specific granule lumen, tertiary granule lumen, specific granule, secretory granule lumen, cytoplasmic vesicle lumen, vesicle lumen, tertiary granule, etc.; molecular function (MF) was mainly enriched in organic acid binding, serine-type endopeptidase activity, serine-type peptidase activity, serine hydrolase activity, etc. The results of Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis showed that the common differential genes were enriched in antifolate resistance, folate transport and metabolism, African trypanosomiasis, malaria, legionellosis, arachidonic acid metabolism, epithelial cell signaling in Helicobacter pylori infection. The key genes HBB, PMP22, HP, FOLR3, CD69, DACH1, ELANE, and PTGDS may be biomarkers or therapeutic targets for EP and T1DM.
Conclusion GE was one of the risk factors for T1DM and HBB, PMP22, HP, FOLR3, CD69, DACH1, ELANE, and PTGDS may be the key argets for the treatment of EP and T1DM.
1.El Youssef N, Jegou A, Makhalova J, et al. Consciousness alteration in focal epilepsy is related to loss of signal complexity and information processing[J]. Sci Rep, 2022, 12(1): 22276. DOI: 10.1038/s41598-022-25861-4.
2.Thijs RD, Ryvlin P, Surges R. Autonomic manifestations of epilepsy: emerging pathways to sudden death?[J]. Nat Rev Neurol, 2021, 17(12): 774-788. DOI: 10.1038/s41582-021-00574-w.
3.Cloete L. Diabetes mellitus: an overview of the types, symptoms, complications and management[J]. Nurs Stand, 2022, 37(1): 61-66. DOI: 10.7748/ns.2021.e11709.
4.何敏, 汪煜楠, 赵琳琳, 等. 癫痫与糖尿病的相关性研究[J]. 自然杂志, 2023, 45(6): 463-467. [He M, Wang YN, Zhao LL, et al. The relationship between epilepsy and diabetes mellitus[J]. Chinese Journal of Nature, 2023, 45(6): 463-467.] DOI: 10.3969/j.issn.0253-9608.2023.06.009.
5.Chou IC, Wang CH, Lin WD, et al. Risk of epilepsy in type 1 diabetes mellitus: a population-based cohort study[J]. Diabetologia, 2016, 59(6): 1196-1203. DOI: 10.1007/s00125-016-3929-0.
6.Wu S, Ding Y. Type 1 diabetes and the risk of epilepsy: a meta-analysis[J]. J Diabetes Investig, 2024, 15(3): 364-373. DOI: 10.1111/jdi.14126.
7.Li CC, Chang CC, Cherng YG, et al. Risk and outcomes of diabetes in patients with epilepsy[J]. Sci Rep, 2021, 11(1): 18888. DOI: 10.1038/s41598-021-98340-x.
8.Sang N, Gao RC, Zhang MY, et al. Causal relationship between sleep traits and risk of systemic lupus erythematosus: a two-sample mendelian randomization study[J]. Front Immunol, 2022, 13: 918749. DOI: 10.3389/fimmu.2022.918749.
9.Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome[J]. Elife, 2018, 7: e34408. DOI: 10.7554/eLife.34408.
10.Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: The STROBE-MR statement[J]. JAMA, 2021, 326(16): 1614-1621. DOI: 10.1001/jama.2021.18236.
11.Burgess S, Scott RA, Timpson NJ, et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors[J]. Eur J Epidemiol, 2015, 30(7): 543-552. DOI: 10.1007/s10654-015-0011-z.
12.Greco MFD, Minelli C, Sheehan NA, et al. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome[J]. Stat Med, 2015, 34(21): 2926-2940. DOI: 10.1002/sim.6522.
13.Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525. DOI: 10.1093/ije/dyv080.
14.牛丁忍, 李志翔, 杨青, 等. 两样本孟德尔随机化分析乳腺癌与骨质疏松症的因果关系[J]. 中国骨质疏松杂志, 2025, 31(1): 55-61. [Niu DR, Li ZX, Yang Q, et al. Causality between breast cancer and osteoporosis: a two-sample Mendelian randomization study[J]. Chinese Journal of Osteoporosis, 2025, 31(1): 55-61.] DOI: 10.3969/j.issn.1006-7108.2025.01.010.
15.Gao H, Li J, Li Q, et al. Identification of hub genes significantly linked to subarachnoid hemorrhage and epilepsy via bioinformatics analysis[J]. Front Neurol, 2023, 14: 1061860. DOI: 10.3389/fneur.2023.1061860.
16.McCorry D, Nicolson A, Smith D, et al. An association between type 1 diabetes and idiopathic generalized epilepsy[J]. Ann Neurol, 2006, 59(1): 204-206. DOI: 10.1002/ana.20727.
17.Al-Balaghee S, Al-Balaghee Z, Shabani A, et al. Determination of haptoglobin genotype in an Iranian population with idiopathic generalized epilepsy[J]. Rep Biochem Mol Biol, 2015, 3(2): 51-55. https://pubmed.ncbi.nlm.nih.gov/26989737/
18.de Paula Silva L, de Moraes Rego FG, Picheth G, et al. Prospection of plasma proteins as biomarkers for diabetes mellitus monitoring[J]. J Diabetes Metab Disord, 2021, 20(1): 611-620. DOI: 10.1007/s40200-021-00788-1.
19.Dalan R, Liuh Ling G. The protean role of haptoglobin and haptoglobin genotypes on vascular complications in diabetes mellitus[J]. Eur J Prev Cardiol, 2018, 25(14): 1502-1519. DOI: 10.1177/2047487318776829.
20.Horwitz E, Krogvold L, Zhitomirsky S, et al. β-Cell DNA damage response promotes islet inflammation in type 1 diabetes[J]. Diabetes, 2018, 67(11): 2305-2318. DOI: 10.2337/db17-1006.
21.Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311. DOI: 10.1016/j.cell.2019.08.053.
22.Kinoshita S, Koyama R. Pro-and anti-epileptic roles of microglia[J]. Neural Regen Res, 2021, 16(7): 1369-1371. DOI: 10.4103/1673-5374.300976.
23.Wang T, Han JG, Dong W, et al. LCN2 and ELANE overexpression induces sepsis[J]. Medicine (Baltimore), 2024, 103(7): e37255. DOI: 10.1097/MD.0000000000037255.
24.Nasri M, Ritter MU, Mir P, et al. CRISPR-Cas9n-mediated ELANE promoter editing for gene therapy of severe congenital neutropenia[J]. Mol Ther, 2024, 32(6): 1628-1642. DOI: 10.1016/j.ymthe.2024.03.037.
25.Newby GA, Yen JS, Woodard KJ, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice[J]. Nature, 2021, 595(7866): 295-302. DOI: 10.1038/s41586-021-03609-w.
26.朱啸巍, 詹飞霞, 张超, 等. PMP22基因相关性周围神经病的遗传学和临床特点分析[J]. 上海交通大学学报(医学版), 2022, 42(5): 609-616. [Zhu XW, Zhan FX, Zhang C, et al. Analysis of genetic and clinical characteristics of PMP22-associated peripheral neuropathy[J]. Journal of Shanghai Jiaotong University(Medical Science), 2022, 42(5): 609-616.] DOI: 10.3969/j.issn.1674-8115.2022.05.008.
27.Yoshitomi R, Nakayama K, Yamashita S, et al. Plasma homocysteine concentration is associated with the expression level of folate receptor 3[J]. Sci Rep, 2020, 10(1): 10283. DOI: 10.1038/s41598-020-67288-9.
28.栗景蕊, 冯芝恩, 赵红, 等. 口腔鳞状细胞癌患者外周血淋巴细胞计数及cd69表达[J]. 北京口腔医学, 2024, 32(5): 320-323. [Li JR, Feng ZE, Zhao H, et al. Peripheral blood lymphocyte count and CD69 expression in patients with oral squamous cell carcinoma[J]. Beijing Journal of Stomatology, 2024, 32(5): 320-323.] DOI: 10.20049/j.bjkqyx.1006-673X.2024.05.004.
29.Chang AH, Raftrey BC, D'Amato G, et al. DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12-CXCR4 signaling axis[J]. Genes Dev, 2017, 31(13): 1308-1324. DOI: 10.1101/gad.301549.117.
30.Popov VM, Zhou J, Shirley LA, et al. The cell fate determination factor DACH1 is expressed in estrogen receptor-alpha-positive breast cancer and represses estrogen receptor-alpha signaling[J]. Cancer Res, 2009, 69(14): 5752-5760. DOI: 10.1158/0008-5472.CAN-08-3992.
31.Lu GF, Geng F, Xiao Z, et al. MicroRNA-6807-3p promotes the tumorigenesis of glioma by targeting downstream DACH1[J]. Brain Res, 2019, 1708: 47-57. DOI: 10.1016/j.brainres.2018.12.008.
32.Li J, Qu Z, Zhu D, et al. Pan cancer research reveals the role of ptgds in tumor suppression and immune regulation[J]. NPJ Precis Oncol, 2025, 9(1): 319. DOI: 10.1038/s41698-025-01097-z.