Objective To construct and validate a prognosis risk model for acute myeloid leukemia (AML) patients.
Methods Based on The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression (GTEx) database to obtain gene sequencing data of AML samples and normal bone marrow samples, and then perform gene differential analysis. The genes associated with AML survival were selected and a random forest model was used to construct a risk scoring model based on gene features. The biological functions of the predictive model were further explored through Gene Ontology (GO) enrichment analysis.
Results According to the results of Kaplan-Meier analysis and receiver operating characteristic (ROC) curve analysis, the survival rate predictions demonstrated good sensitivity and specificity in both the training and testing datasets. Multivariate Cox regression analysis and stratified analysis showed that the gene prognostic risk model could independently predict the survival outcomes of patients with AML. GO enrichment analysis demonstrated that differentially expressed genes were enriched in biological processes related to known AML.
Conclusion By using bioinformatics methods, a mRNA marker containing 5 genes (ACOT7, SFXN3, SLC29A2, HINT2, ZMAT1) has been identified, which may serve as a potential prognostic marker for AML and provide a basis for personalized risk assessment and the formulation of treatment plans for AML patients.
1.Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia[J]. Lancet, 2018, 392(10147): 593-606. DOI: 10.1016/S0140-6736(18)31041-9.
2.Coombs CC, Tallman MS, Levine RL. Molecular therapy for acute myeloid leukaemia[J]. Nat Rev Clin Oncol, 2016, 13(5): 305-318. DOI: 10.1038/nrclinonc.2015.210.
3.Adriaens C, Standaert L, Barra J, et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity[J]. Nat Med, 2016, 22(8): 861-868. DOI: 10.1038/nm.4135.
4.Yi M, Li A, Zhou L, et al. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017[J]. J Hematol Oncol, 2020, 13(1): 72. DOI: 10.1186/s13045-020-00908-z.
5.Liu L, Ma J, Qin L, et al. Interleukin-24 enhancing antitumor activity of chimeric oncolytic adenovirus for treating acute promyelocytic leukemia cell[J]. Medicine (Baltimore), 2019, 98(22): e15875. DOI: 10.1097/MD.0000000000015875.
6.Liu Y, Cheng Z, Pang Y, et al. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia[J]. J Hematol Oncol, 2019, 12(1): 51. DOI: 10.1186/s13045-019-0734-5.
7.Zhou JD, Li XX, Zhang TJ, et al. MicroRNA-335/ID4 dysregulation predicts clinical outcome and facilitates leukemogenesis by activating PI3K/Akt signaling pathway in acute myeloid leukemia[J]. Aging (Albany NY), 2019, 11(10): 3376-3391. DOI: 10.18632/aging.101991.
8.Shallis RM, Wang R, Davidoff A, et al. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges[J]. Blood Rev, 2019, 36: 70-87. DOI: 10.1016/j.blre.2019.04.005.
9.Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-Methyladenosine RNA demethylase[J]. Cancer Cell, 2017, 31(1): 127-141. DOI: 10.1016/j.ccell.2016.11.017.
10.Bret C, Viziteu E, Kassambara A, et al. Identifying high-risk adult AML patients: epigenetic and genetic risk factors and their implications for therapy[J]. Expert Rev Hematol, 2016, 9(4): 351-360. DOI: 10.1586/17474086.2016.1141673.
11.Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis[J]. Semin Hematol, 2019, 56(2): 84-89. DOI: 10.1053/j.seminhematol.2018.08.001.
12.Bullinger L, Valk PJ. Gene expression profiling in acute myeloid leukemia[J]. J Clin Oncol, 2005, 23(26): 6296-6305. DOI: 10.1200/JCO.2005.05.020.
13.Li W, Gao LN, Song PP, et al. Development and validation of a RNA binding protein-associated prognostic model for lung adenocarcinoma[J]. Aging (Albany NY), 2020, 12(4): 3558-3573. DOI: 10.18632/aging.102828.
14.Zhou X, Liang S, Zhan Q, et al. HSPG2 overexpression independently predicts poor survival in patients with acute myeloid leukemia[J]. Cell Death Dis, 2020, 11(6): 492. DOI: 10.1038/s41419-020-2694-7.
15.Li Y, Shao H, Da Z, et al. High expression of SLC38A1 predicts poor prognosis in patients with de novo acute myeloid leukemia[J]. J Cell Physiol, 2019, 234(11): 20322-20328. DOI: 10.1002/jcp.28632.
16.Wróbel T, Gębura K, Wysoczańska B, et al. IL-17F gene polymorphism is associated with susceptibility to acute myeloid leukemia[J]. J Cancer Res Clin Oncol, 2014, 140(9): 1551-1555. DOI: 10.1007/s00432-014-1674-7.
17.Ma Z, Li Z, Wang S, et al. ZMAT1 acts as a tumor suppressor in pancreatic ductal adenocarcinoma by inducing SIRT3/p53 signaling pathway[J]. J Exp Clin Cancer Res, 2022, 41(1): 130. DOI: 10.1186/s13046-022-02310-8.
18.Zhang X, Liu B, Zhang J, et al. Expression level of ACOT7 influences the prognosis in acute myeloid leukemia patients[J]. Cancer Biomark, 2019, 26(4): 441-449. DOI: 10.3233/CBM-182287.
19.Chen CF, Hsu EC, Lin KT, et al. Overlapping high-resolution copy number alterations in cancer genomes identified putative cancer genes in hepatocellular carcinoma[J]. Hepatology, 2010, 52(5): 1690-1701. DOI: 10.1002/hep.23847.
20.Mathews CK. DNA precursor metabolism and genomic stability[J]. FASEB J, 2006, 20(9): 1300-1314. DOI: 10.1096/fj.06-5730rev.
21.Murase R, Abe Y, Takeuchi T, et al. Serum autoantibody to sideroflexin 3 as a novel tumor marker for oral squamous cell carcinoma[J]. Proteomics Clin Appl, 2008, 2(4): 517-527. DOI: 10.1002/prca.200780123.
22.Zhou DK, Qian XH, Cheng J, et al. Clinical significance of down-regulated HINT2 in hepatocellular carcinoma[J]. Medicine (Baltimore), 2019, 98(48): e17815. DOI: 10.1097/MD.0000000000017815.