Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.8 Detail

Exploring the correlation between chronic obstructive pulmonary disease and gut microbiota based on mendelian randomization and mediation analysis

Published on Sep. 04, 2024Total Views: 2825 times Total Downloads: 519 times Download Mobile

Author: ZHOU Zijin 1 HUA Lin 2

Affiliation: 1. School of Public Health, Capital Medical University, Beijing 100069, China 2. School of Biomedical Engineering, Capital Medical University, Beijing 100069, China

Keywords: Chronic obstructive pulmonary disease Single nucleotide polymorphisms Mendelian randomization Mediation analysis

DOI: 10.12173/j.issn.1004-4337.202405005

Reference: Zhou ZJ, Hua L. Exploring the correlation between chronic obstructive pulmonary disease and gut microbiota based on mendelian randomization and mediation analysis[J]. Journal of Mathematical Medicine, 2024, 37(8): 584-591. DOI: 10.12173/j.issn.1004-4337.202405005[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the correlation between gut microbiota and chronic obstructive pulmonary disease (COPD) based on Mendelian randomization.

Methods  Gut microbiota was used as exposure factors, COPD as an outcome factor, and single nucleotide polymorphisms (SNPs) as instrumental variables to explore the relationship between gut microbiota and COPD using Mendelian randomization analysis.

Results  13 kinds of COPD-associated bacteria were found, and Lachnospiraceae (P=0.023), Clostridiumsensustricto (P=0.039) and Akkermansia (P=0.047) were the most significant bacteria associated with COPD. Interleukin-4 (IL-4) was the inflammatory factor which was associated with the greatest number of bacteria. By the mediation analysis, it was found that IL-4 mediated the relationship between three bacteria (Clostridiumsensustricto, Enterorhabdus, Ruminococcaceae) and COPD.

Conclusion  Gut microbiota has an impact on airway inflammation and lung function in COPD. For example, the population with smoke or asthma may experience a significant decrease in the abundance of Lachnospiraceae, and there is a significant correlation between Ruminococcaceae and cellular inflammatory cytokine levels.

Full-text
Please download the PDF version to read the full text: download
References

1.何佳英, 罗曼, 雷翊柔, 等. 肠道菌群在慢性阻塞性肺疾病中研究进展[J]. 临床肺科杂志, 2023, 28(11): 1736-1739. [He JY, Luo M, Lei YR, et al. Research progress on gut microbiota in chronic obstructive pulmonary disease[J]. Journal of Clinical Pulmonary Medicine, 2023, 28(11): 1736-1739.] DOI: 10.3969/j.issn.1009-6663.2023.11.024.

2.Upadhyay P, Wu CW, Pham A, et al. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD)[J]. J Toxicol Environ Health B Crit Rev, 2023, 26(5): 275-305. DOI: 10.1080/10937404. 2023.2208886.

3.Bowerman KL, Rehman SF, Vaughan A, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease[J]. Nat Commun, 2020, 11(1): 5886. DOI: 10.1038/s41467-020-19701-0.

4.吴永红, 陈军, 罗洲. 慢性阻塞性肺疾病肠道微生态与炎症因子及临床指标的相关性[J].实用医学杂志, 2020, 36(5): 634-638, 644. [Wu YH, Chen J, Luo Z. Correlation of intestinal micro-ecology with inflammatory factors and clinical indicators inchronic obstructive pulmonary disease[J]. The Journal of Practical Medicine, 2020, 36(5): 634-638, 644.] DOI: 10.3969/j.issn.1006- 5725.2020.05.018.

5.Birney E. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022, 12(4): a041302. DOI: 10.1101/cshperspect.a041302.

6.Xu Q, Ni JJ, Han BX, et al. Causal relationship between gut microbiota and autoimmune diseases: a two-sample Mendelian randomization study[J]. Front Immunol, 2022, 12: 746998. DOI: 10.3389/fimmu.2021.746998.

7.Emdin CA, Khera AV, Kathiresan S. Mendelian randomization[J]. JAMA, 2017, 318(19): 1925-1926. DOI: 10.1001/jama.2017.17219.

8.Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants[J]. Int J Epidemiol, 2011, 40(3): 740-752. DOI: 10.1093/ije/dyq151.

9.于天琦, 徐文涛, 苏雅娜, 等. 孟德尔随机化研究基本原理、方法和局限性[J]. 中国循证医学杂志, 2021, 21(10): 1227-1234. [Yu TQ, Xu WT, Su YN, et al. Mendelian randomization: the basic principles, methods and limitations[J]. Chinese Journal of Evidence-Based Medicine, 2021, 21(10): 1227-1234.] DOI: 10.7507/1672-2531.202107008.

10.Bowden J, Del Greco MF, Minelli C, et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic[J]. Int J Epidemiol, 2016, 45(6): 1961-1974. DOI: 10.1093/ije/dyw220.

11.Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023[J]. Wellcome Open Res, 2023, 4: 186. DOI: 10.12688/wellcomeopenres.15555.3.

12.吴劼, 李宏云. 肠道菌群与慢性阻塞性肺疾病的相关性[J]. 河南医学研究, 2022, 31(21): 4023-4028. [Wu  J, Li H. Correlation between intestinal flora and chronic obstructive pulmonary disease[J]. Henan Medical Research, 2022, 31(21): 4023-4028] DOI: 10.3969/j.issn. 1004-437X.2022.21.051.

13.de Miguel-Díez J, López-de-Andrés A, Esteban-Vasallo MD, et al. Clostridium difficile infection in hospitalized patients with COPD in Spain (2001-2015)[J]. Eur J Intern Med, 2018, 57: 76-82. DOI: 10.1016/j.ejim.2018.06.022.

14.Barker AK, Van Galen A, Sethi AK, et al. Tobacco use as a screener for Clostridium difficile infection outcomes[J]. J Hosp Infect, 2018, 98(1): 36-39. DOI: 10.1016/j.jhin. 2017.06.026.

15.Savin Z, Kivity S, Yonath H, et al. Smoking and the intestinal microbiome[J]. Arch Microbiol, 2018, 200(5): 677-684. DOI: 10.1007/s00203-018-1506-2.

16.Wu X, Li RF, Lin ZS, et al. Coinfection with influenza virus and non-typeable Haemophilus influenzae aggregates inflammatory lung injury and alters gut microbiota in COPD mice[J]. Front Microbiol, 2023, 14: 1137369. DOI: 10.3389/fmicb.2023.1137369.

17.陶赟臻, 赵晓秋, 刘晓倩, 等. 慢性阻塞性肺部疾病患者肺部感染危险因素分析及炎症因子水平变化[J]. 中国消毒学杂志, 2023, 40(6): 448-452. [Tao YZ, Zhao XQ, Liu XQ, et al. Analysis of risk factors of pulmonary infection and changes in inflammatory factors in patients with chronic obstructive pulmonary disease[J]. Chinese Journal of Disinfection, 2023, 40(6): 448-452.] DOI: 10.11726/j.issn.1001-7658.2023.06.014.

18.黄长明, 吴瑕, 张冉, 等. COPD急性加重期患者血清SIRT1与炎症因子水平的相关性及临床意义[J]. 中南医学科学杂志, 2023, 51(6): 931-933. [Huang CM, Wu  X, Zhang R, et al. Correlation and clinical significance of serum SIRT1 and inflammation cytokines levels in acute exacerbation of COPD patients[J]. Medical Science Journal of Central South China, 2023, 51(6): 931-933.] DOI: 10.15972/j.cnki.43-1509/r.2023.06.032.

19.Gorska K, Nejman-Gryz P, Paplinska-Goryca M, et al. Comparative study of IL-33 and IL-6 levels in different respiratory samples in mild-to-moderate asthma and COPD[J]. COPD, 2018, 15(1): 36-45. DOI: 10.1080/15412555.2017.1416074.

20.Chua HH, Chou HC, Tung YL, et al. Intestinal dybiosis featuring abundance of Ruminococcus gnavus associated with allergic diseases in infants[J]. Gastroenterology, 2018, 154(1): 154-167. DOI: 10.1053/j.gastro.2017.09.006.

21.Scott G, Asrat S, Allinne J, et al. IL-4 and IL-13, not eosinophils, drive type 2 airway inflammation, remodeling and lung function decline[J]. Cytokine, 2023, 162: 156091. DOI: 10.1016/j.cyto.2022.156091.

22.Du G, Dong W, Yang Q, et al. Altered gut microbiota related to inflammatory responses in patients with Huntington's disease[J]. Front Immunol, 2021, 11: 603594. DOI: 10.3389/fimmu.2020.603594.

Popular papers
Last 6 months