Liposarcoma is a malignant soft tissue tumor originating from mesenchymal tissue. Currently, surgical resection is the main treatment method for liposarcoma, and systemic therapy with anthracycline cytotoxic drugs can be used for the patients with distant metastasis. Due to the heterogeneity of the tumor, the progress of immunotherapy for liposarcoma is blocked. This paper will focus on the complex immunological characteristics of liposarcoma, and review the progress of its immunotherapy, aiming to provide a few references for the optimization of immunotherapy for liposarcoma.
1.Fridman WH, Zitvogel L, Sautès-Fridman C, et al. The immune contexture in cancer prognosis and treatment[J]. Nat Rev Clin Oncol, 2017, 14(12): 717-734. DOI: 10.1038/nrclinonc.2017.101.
2.徐敏烨, 李志广, 林明恩. 肾透明细胞癌的多位点转录后甲基化修饰模式和免疫特征综合分析[J]. 湖南学院学报(医学版), 2024, 26(3): 13-20. [Xu MY, Li ZG, Lin ME. Comprehensive analysis of multisite post-transcriptional methylation modification patterns and immune characteristics in kidney renal clear cell carcinoma[J]. Journal of Xiangnan University (Medical Sciences), 2024, 26(3): 13-20.] DOI: 10.16500/j.cnki.1673-498x.2024.03.003.
3.朱怡璇, 汪洋, 王彤敏. 免疫检查点抑制剂治疗EGFR-TKIs耐药NSCLC的研究进展[J]. 中国药房, 2025, 36(2): 239-244. [Zhu YX, Wang Y, Wang TM. Research progress of immune checkpoint inhibitors in the treatment of EGFR-TKIs-resistant NSCLC[J]. China Pharmacy, 2025, 36(2): 239-244.] DOI: 10.6039/j.issn.1001-0408.2025.02.18.
4.Petitprez F, Fossati N, Vano Y, et al. PD-L1 expression and CD8+ T-cell infiltrate are associated with clinical progression in patients with node-positive prostate cancer[J]. Eur Urol Focus, 2019, 5(2): 192-196. DOI: 10.1016/j.euf.2017.05.013.
5.Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy[J]. Nat Rev Cancer, 2020, 20(11): 662-680. DOI: 10.1038/s41568-020-0285-7.
6.Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response[J]. Nature, 2020, 577(7791): 549-555. DOI: 10.1038/s41586-019-1922-8.
7.Adams S, Gray RJ, Demaria S, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase I II randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199[J]. J Clin Oncol, 2014, 32(27): 2959-2966. DOI: 10.1200/JCO.2013.55.0491.
8.Kochi M, Iwamoto T, Niikura N, et al. Tumour-infiltrating lymphocytes (TILs)-related genomic signature predicts chemotherapy response in breast cancer[J]. Breast Cancer Res Treat, 2018, 167(1): 39-47. DOI: 10.1007/s10549-017-4502-3.
9.Luen SJ, Salgado R, Dieci MV, et al. Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy[J]. Ann Oncol, 2019, 30(2): 236-242. DOI: 10.1093/annonc/mdy547.
10.Rakaee M, Adib E, Ricciuti B, et al. Association of machine learning-based assessment of tumor-infiltrating lymphocytes on standard histologic images with outcomes of immunotherapy in patients with NSCLC[J]. JAMA Oncol, 2023, 9(1): 51-60. DOI: 10.1001/jamaoncol.2022.4933.
11.Lee ATJ, Thway K, Huang PH, et al. Clinical and molecular spectrum of liposarcoma[J]. J Clin Oncol, 2018, 36(2): 151-159. DOI: 10.1200/JCO.2017.74.9598.
12.Jagosky MH, Anderson CJ, Symanowski JT, et al. Genomic alterations and clinical outcomes in patients with dedifferentiated liposarcoma[J]. Cancer Med, 2023, 12(6): 7029-7038. DOI: 10.1002/cam4.5502.
13.Resag A, Toffanin G, Benešová I, et al. The immune contexture of liposarcoma and its clinical implications[J]. Cancers (Basel), 2022, 14(19): 4578. DOI: 10.3390/cancers14194578.
14.Dancsok AR, Setsu N, Gao D, et al. Expression of lymphocyte immunoregulatory biomarkers in bone and soft-tissue sarcomas[J]. Mod Pathol, 2019, 32(12):1772-1785. DOI: 10.1038/s41379-019-0312-y.
15.Oike N, Kawashima H, Ogose A, et al. Human leukocyte antigen I is significantly downregulated in patients with myxoid liposarcomas[J]. Cancer Immunol Immunother, 2021, 70(12): 3489-3499. DOI: 10.1007/s00262-021-02928-1.
16.Yan L, Wang Z, Cui C, et al. Comprehensive immune characterization and T-cell receptor repertoire heterogeneity of retroperitoneal liposarcoma[J]. Cancer Sci, 2019, 110(10): 3038-3048. DOI: 10.1111/cas.14161.
17.Schroeder BA, LaFranzo NA, LaFleur BJ, et al. CD4+ T cell and M2 macrophage infiltration predict dedifferentiated liposarcoma patient outcomes[J]. J Immunother Cancer, 2021, 9(8): e002812. DOI: 10.1136/jitc-2021-002812.
18.Judge SJ, Darrow MA, Thorpe SW, et al. Analysis of tumor-infiltrating NK and T cells highlights IL-15 stimulation and TIGIT blockade as a combination immunotherapy strategy for soft tissue sarcomas[J]. J Immunother Cancer, 2020, 8(2): e001355. DOI: 10.1136/jitc-2020-001355.
19.Minopoli M, Sarno S, Cannella L, et al. Crosstalk between macrophages and myxoid liposarcoma cells increases spreading and invasiveness of tumor cells[J]. Cancers (Basel), 2021, 13(13): 3298. DOI: 10.3390/cancers13133298.
20.Tawbi HA, Burgess M, Bolejack V, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial[J]. Lancet Oncol, 2017, 18 (11): 1493-1501. DOI: 10.1016/S1470-2045(17)30624-1.
21.Keung EZ, Burgess M, Salazar R, et al. Correlative analyses of the SARC028 trial reveal an association between sarcoma-associated immune infiltrate and response to pembrolizumab[J]. Clin Cancer Res, 2020, 26(6): 1258-1266. DOI: 10.1158/1078-0432.CCR-19-1824.
22.Esparcia-Pinedo L, Romero-Laorden N, Alfranca A. Tertiary lymphoid structures and B lymphocytes: a promising therapeutic strategy to fight cancer[J]. Front Immunol, 2023, 14: 1231315. DOI: 10.3389/fimmu.2023.1231315.
23.Petitprez F, de Reyniès A, Keung EZ, et al. B Cells B cells are associated with survival and immunotherapy response in sarcoma[J]. Nature, 2020, 577(7791): 556-560. DOI: 10.1038/s41586-019-1906-8.
24.Tsagozis P, Augsten M, Zhang Y, et al. An immunosuppressive macrophage profile attenuates the prognostic impact of CD20-positive B cells in human soft tissue sarcoma[J]. Cancer Immunol Immunother, 2019, 68(6): 927-936. DOI: 10.1007/s00262-019-02322-y.
25.Sorbye SW, Kilvaer T, Valkov A, et al. High expression of CD20+ lymphocytes in soft tissue sarcomas is a positive prognostic indicator[J]. Oncoimmunology, 2012, 1(1): 75-77. DOI: 10.4161/onci.1.1.17825.
26.Smolle MA, Herbsthofer L, Goda M, et al. Influence of tumor-infiltrating immune cells on local control rate, distant metastasis, and survival in patients with soft tissue sarcoma[J]. Oncoimmunology, 2021, 10(1): 1896658. DOI: 10.1080/2162402X.2021.1896658.
27.Sautès-Fridman C, Petitprez F, Calderaro J, et al. Tertiary lymphoid structures in the era of cancer immunotherapy[J]. Nat Rev Cancer, 2019,19(6): 307-325. DOI: 10.1038/s41568-019-0144-6.
28.Italiano A, Bessede A, Pulido M, et al. Pembrolizumab in soft-tissue sarcomas with tertiary lymphoid structures: a phase 2 PEMBROSARC trial cohort[J]. Nat Med, 2022, 28(6): 1199-1206. DOI: 10.1038/s41591-022-01821-3.
29.Pan Y, Yu Y, Wang X, et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol, 2020, 11: 583084. DOI: 10.3389/fimmu.2020.583084.
30.Dancsok AR, Gao D, Lee AF, et al. Tumor-associated macrophages and macrophage-related immune checkpoint expression in sarcomas[J]. Oncoimmunology, 2020, 9(1): 1747340. DOI: 10.1080/2162402X.2020.1747340.
31.Abeshouse A, Adebamowo C, Adebamowo SN, et al. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas[J]. Cell, 2017, 171(4): 950-965. DOI: 10.1016/j.cell.2017.10.014.
32.Nabeshima A, Matsumoto Y, Fukushi J, et al. Tumour-associated macrophages correlate with poor prognosis in myxoid liposarcoma and promote cell motility and invasion via the HB-EGF-EGFR-PI3K/Akt pathways[J]. Br J Cancer, 2015, 112(3): 547-555. DOI: 10.1038/bjc.2014.637.
33.Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy[J]. Nat Immunol, 2016, 17(9): 1025-1036. DOI: 10.1038/ni.3518.
34.Cózar B, Greppi M, Carpentier S, et al. Tumor-infiltrating natural killer cells[J]. Cancer Discov, 2021, 11(1): 34-44. DOI: 10.1158/2159-8290.CD-20-0655.
35.Sayitoglu EC, Georgoudaki AM, Chrobok M, et al. Boosting natural killer cell-mediated targeting of sarcoma through DNAM-1 and NKG2D[J]. Front Immunol, 2020, 11: 40. DOI: 10.3389/fimmu.2020.00040.
36.Zhang L, Lin W, Zhou Y, et al. A complement-related gene signature for predicting overall survival and immunotherapy efficacy in sarcoma patients[J]. Front Cell Dev Biol, 2022, 10: 765062. DOI: 10.3389/fcell.2022.765062.
37.Niedbala M, Malarz K, Sharma G, et al. Glioblastoma: pitfalls and opportunities of immunotherapeutic combinations[J]. Onco Targets Ther, 2022, 15: 437-468. DOI: 10.2147/OTT.S215997.
38.Qian D, Liu Y, Zheng J, et al. Dendritic cell therapy for neurospoagioma: immunomodulation mediated by tumor vaccine[J]. Cell Death Discov, 2024, 10(1): 11. DOI: 10.1038/s41420-023-01782-7.
39.Chen H, Zhang Y, Li L, et al. Effective CpG delivery using zwitterion-functionalized dendrimer-entrapped gold nanoparticles to promote T cell-mediated immunotherapy of cancer cells[J]. Biosensors (Basel), 2022, 12(2): 71. DOI: 10.3390/bios12020071.
40.Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses[J]. Cell Mol Immunol, 2020, 17(6): 587-599. DOI: 10.1038/s41423-020-0465-0.
41.Jego G, Pascual V, Palucka AK, et al. Dendritic cells control B cell growth and differentiation[J]. Curr Dir Autoimmun, 2005, 8: 124-139. DOI: 10.1159/000082101.
42.Qi H, Egen JG, Huang AY, et al. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells[J]. Science, 2006, 312(5780): 1672-1676. DOI: 10.1126/science.1125703.
43.Chen TW, Hsu CL, Hong RL, et al. A single-arm phase Ib/II study of lenvatinib plus eribulin in advanced liposarcoma and leiomyosarcoma[J]. Clin Cancer Res, 2022, 28(23): 5058-5065. DOI: 10.1158/1078-0432.CCR-22-2092.
44.Wang Z, Tao P, Fan P, et al. Insight of a lipid metabolism prognostic model to identify immune landscape and potential target for retroperitoneal liposarcoma[J]. Front Immunol, 2023, 14: 1209396. DOI: 10.3389/fimmu.2023.1209396.
45.Sharma P, Zhang X, Ly K, et al. Hyperglycosylation of prosaposin in tumor dendritic cells drives immune escape[J]. Science, 2024, 383(6679): 190-200. DOI: 10.1126/science.adg1955.
46.Lynch C, Pitroda SP, Weichselbaum RR. Radiotherapy, immunity, and immune checkpoint inhibitors[J]. Lancet Oncol, 2024, 25(8): e352-e362. DOI: 10.1016/S1470-2045(24)00075-5.
47.Li B, Jin J, Guo D, et al. Immune checkpoint inhibitors combined with targeted therapy: the recent advances and future potentials[J]. Cancers (Basel), 2023, 15(10): 2858. DOI: 10.3390/cancers15102858.
48.Zhou Q, Lei L, Cheng J, et al. Microbiota-induced S100A11-RAGE axis underlies immune evasion in right-sided colon adenomas and is a therapeutic target to boost anti-PD1 efficacy[J]. Gut, 2025, 74(2): 214-228. DOI: 10.1136/gutjnl-2024-332193.
49.Mathew D, Marmarelis ME, Foley C, et al. Combined JAK inhibition and PD-1 immunotherapy for non-small cell lung cancer patients[J]. Science, 2024, 384(6702): eadf1329. DOI: 10.1126/science.adf1329.
50.Sha H, Tong F, Ni J, et al. First-line penpulimab (an anti-PD1 antibody) and anlotinib (an angiogenesis inhibitor) with nab-paclitaxel/gemcitabine (PAAG) in metastatic pancreatic cancer: a prospective, multicentre, biomolecular exploratory, phase II trial[J]. Signal Transduct Target Ther, 2024, 9(1): 143. DOI: 10.1038/s41392-024-01857-6.
51.Liu H, Zhao Q, Tan L, et al. Neutralizing IL-8 potentiates immune checkpoint blockade efficacy for glioma[J]. Cancer Cell, 2023, 41(4): 693-710. DOI: 10.1016/j.ccell.2023.03.004.
52.Movva S, Wen W, Chen W, et al. Multi-platform profiling of over 2000 sarcomas: identification of biomarkers and novel therapeutic targets[J]. Oncotarget, 2015, 6(14): 12234-12247. DOI: 10.18632/oncotarget.3498.
53.Orth MF, Buecklein VL, Kampmann E, et al. A comparative view on the expression patterns of PD-L1 and PD-1 in soft tissue sarcomas[J]. Cancer Immunol Immunother, 2020, 69(7): 1353-1362. DOI: 10.1007/s00262-020-02552-5.
54.Kim JR, Moon YJ, Kwon KS, et al. Tumor infiltrating PD1-positive lymphocytes and the expression of PD-L1 predict poor prognosis of soft tissue sarcomas.[J]. PLoS One, 2013, 8(12): e82870. DOI: 10.1371/journal.pone.0082870.
55.Miyake M, Oda Y, Nishimura N, et al. Integrative assessment of clinicopathological parameters and the expression of PD-L1, PD-L2 and PD-1 in tumor cells of retroperitoneal sarcoma[J]. Oncol Lett, 2020, 20(5):190. DOI: 10.3892/ol.2020.12052.
56.Zheng B, Wang J, Cai W, et al. Changes in the tumor immune microenvironment in resected recurrent soft tissue sarcomas[J]. Ann Transl Med, 2019, 7(16): 387. DOI: 10.21037/atm.2019.07.43.
57.Que Y, Fang Z, Guan Y, et al. LAG-3 LAG-3 expression on tumor-infiltrating T cells in soft tissue sarcoma correlates with poor survival[J]. Cancer Biol Med, 2019, 16(2): 331-340. DOI: 10.20892/j.issn.2095-3941.2018.0306.
58.Simon M, Mughal SS, Horak P, et al. Deconvolution of sarcoma methylomes reveals varying degrees of immune cell infiltrates with association to genomic aberrations[J]. J Transl Med, 2021, 19(1): 204. DOI: 10.1186/s12967-021-02858-7.
59.徐耀杰, 常易航, 莫匹满, 等. 高分化/去分化脂肪肉瘤的疾病特征及免疫相关治疗的研究进展[J]. 实用肿瘤学杂志, 2024, 38(4): 278-282. [Xu YJ, Chang YH, Mo PM, et al. Research progress on disease characteristics and immune-related treatment of well-differentiated/dedifferentiated liposarcoma[J]. Practical Oncology Journal, 2024, 38(4): 278-282.] DOI: 10.11904/j.issn.1002-3070.2024.04.011.
60.Wagner MJ, Zhang Y, Cranmer LD, et al. A phase 1/2 trial combining avelumab and trabectedin for advanced liposarcoma and leiomyosarcoma[J]. Clin Cancer Res, 2022, 28(11): 2306-2312. DOI: 10.1158/1078-0432.CCR-22-0240.