Objective To study the application value of low-dose CT combined with DCE-MRI in qualitative diagnosis of benign and malignant pulmonary nodules.
Method 90 patients with pulmonary nodules (a total of 130 nodular lesions) admitted to The First Affiliated Hospital of Henan University were included as research objects. All patients underwent low-dose CT examination and DCE-MRI examination, and the diagnosis was made according to the imaging results. Using pathological diagnosis results as the gold standard, the sensitivity and specificity of low-dose CT and low-dose CT+DCE-MRI in differential diagnosis of benign and malignant pulmonary nodules were calculated and compared respectively. At the same time, DCE-MRI quantitative analysis method was used to compare the DCE-MRI imaging parameters (Ve, Ktrans, Kep) of lung nodules in the benign group and malignant group, and to compare the corresponding pathological characteristics of malignant nodules and the distribution of DCE-MRI imaging parameters.
Result The sensitivity and specificity of low-dose CT+DCE-MRI in the differential diagnosis of pulmonary nodules were 94.79% and 94.12%, respectively, higher than those of 83.33% and 79.41% under low-dose CT alone (P<0.05). In terms of Ve, Ktrans and Kep parameter values, nodules in malignant group were higher than those in benign group (P<0.05). Three parameters of patients with stage Ⅲ to Ⅳ, moderate and low tumor differentation and pleural invasion in the malignant group were significantly higher.
Conclusion Combined application of DCE-MRI on the basis of low-dose CT can effectively improve the sensitivity and specificity of qualitative diagnosis of benign and malignant pulmonary nodules, and through statistical analysis of quantitative parameters of DCE-MRI, it can provide reliable information for the differential diagnosis of benign and malignant pulmonary nodules and the evaluation of pathological features of malignant tumors.
1.焦志云, 胡春洪, 杜芳, 等. 磁共振动态增强联合多b值扩散加权成像鉴别诊断肺部良恶性病变的价值[J]. 临床放射学杂志, 2019, 38(2): 239-243. [Jiao ZY, Hu CH, Du F, et al. Value of dynamic contrast-enhanced MRI combined with multiple b-value diffusion-weighted imaging for differentiation of benign and malignant lung lesions[J]. Journal of Clinical Radiology, 2019, 38(2): 239-243.] DOI: 10.13437/j.cnki.jcr.2019.02.013.
2.冯会, 时高峰, 刘辉, 等. 自由呼吸Star-VIBE序列动态增强MRI联合DWI在孤立性肺结节诊断中的应用[J]. 放射学实践, 2020, 35(7): 855-859. [Feng H, Shi GF, Liu H, et al. The application of free-breathing Star-VIBE se-quence dynamic enhanced MRI combined with DWI in diagnosis of solitary pulmonary nodules[J]. Ra-diologic Practice, 2020, 35(7): 855-859.] DOI: 10.13609/j.cnki. 1000-0313.2020.07.005.
3.史昭菲, 刘绪忠,柏根基. 磁共振动态增强扫描定量分析方法评价肺部肿块良恶性初步研究[J]. 中国临床医学影像杂志, 2017, 28(7): 475-479. [Shi ZF, Liu XZ, Bai GJ. A preliminary study of diagnosing lung neoplasms with quantitative analysis of DCE-MRI[J]. Journal of China Clinic Medical Imaging, 2017, 28(7): 475-479.] DOI: 10.3969/j.issn.1008-1062. 2017.07.005.
4.宋伟, 张禹, 张茜, 等. DWI和DCE-MRI定量参数鉴别良恶性软组织肿瘤的价值[J]. 放射学实践, 2022, 37(4): 498-503. [Song W, Zhang Y, Zhang Q, et al. The value of quantitative parameters from diffusion weighted imaging and dynamic contrast enhanced MRI in differentiating benign and malignant soft tissue tu-mors[J]. Radiologic Practice, 2022, 37(4): 498-503.] DOI: 10.13609/j.cnki.1000-0313.2022.04.015.
5.刘雅怡, 徐文坚, 郝大鹏. DCE-MRI定量参数评价软组织肿瘤生物学行为研究进展[J]. 放射学实践, 2021, 36(10): 1326-1329. [Liu YY, Xu WJ, Hao DP. Evaluation of biological behavior of Soft tissue tumor by quantitative parameters of DCE-MRI[J]. Radiologic Practice, 2021, 36(10): 1326-1329.] DOI: 10.13609/j.cnki.1000- 0313.2021.10.025.
6.杜永浩, 梁挺, 杨健, 等. DCE-MRI Extended tofts模型和Reference Region模型在肺部结节/肿块良恶性诊断中的应用价值[J].西安交通大学学报(医学版), 2019, 40(3): 417-420, 450. [Du YH, Liang T, Yang J, et al. Com-parative study of Extended tofts model and Reference Region model in DCE-MRI of discriminating benign and malignant pulmonary nodules/masses[J]. Journal of Xi'an Jiaotong University (Medical Sci-ences), 2019, 40(3): 417-420, 450.] DOI: 10.7652/Jdyxb201903014.
7.赵娓娓, 宦怡, 郑敏文, 等. DCE-MRI定量参数预测胰腺癌组织生物学特征的初步研究[J].放射学实践, 2021, 36(4): 502-506. [Zhao WW, Huan Y, Zheng MW, et al. A preliminary study on DCE-MRI quantitative parameters in predicting the histobiological features of pancreatic cancer before operation[J]. Radiologic Practice, 2021, 36(4): 502-506.] DOI: 10.13609/j.cnki.1000-0313. 2021.04.016.
8.陈永晔, 张恩龙, 张家慧, 等. 基于磁共振动态增强的影像组学及深度学习在肺癌脊柱转移鉴别诊断中的应用[J]. 临床放射学杂志, 2020, 39(1): 111-116. [Chen YY, Zhang EL, Zhang JH, et al. The application of radiomics and deep learning based on dynamic contrast-enhanced MRI in differential diagnosis of lung cancer spinal metastasis[J]. Journal of Clinical Radiology, 2020, 39(1): 111-116.] DOI: 10.13437/j.cnki.jcr.2020.01.023.
9.孟思, 周超, 李小华, 等. 肺癌患者DCE-MRI表现特点与其临床病理类型、疾病严重程度的相关性分析[J]. 哈尔滨医科大学学报, 2020, 54(2): 160-163. [Meng S, Zhou C, Li XH, et al. Analysis of the correlation between DCE-MRI features and clinicopathological types and severity of lung cancer[J]. Journal of Harbin Medical University, 2020, 54(2): 160-163.] DOI: 10.3969/j.issn.1000-1905.2020.02.012.
10.陶全, 吕意凡, 徐红, 等. 定量与半定量动态增强MRI鉴别甲状腺良恶性结节的临床价值[J]. 中国医学计算机成像杂志, 2022, 28(1): 38-43. [Tao Q, Lyu YF, Xu H, et al. The role of quantitative and qualitative DCE-MRI in distinguishing benign and malignant of thyroids nodules[J]. Chinese Computed Medical Imaging, 2002, 28(1): 38-43.] DOI: 10.19627/j.cnki.cn31-1700/th.2022.01.002.
11.王娟. DCE-MRI+多b值DWI检查对肺部良性病变与肺癌鉴别诊断准确率的影响[J]. 哈尔滨医药, 2021, 41(1): 53-54. [Wang J. Effect of DCE-MRI+ multi-B-value DWI on differential diagnosis accuracy of lung benign lesions and lung cancer[J]. Harbin Medical Journal, 2021, 41(1): 53-54.] DOI: 10.3969/j.issn.1001-8131.2021.01.026.
12.解礼冰, 田兴仓,马丽,等. DCE-MRI诊断肺癌和肺部不同类型良性肿块的价值[J]. 磁共振成像, 2018, 9(3): 192-196. [Xie LB, Tian XC, Ma L, et al. Value of dynamic contrast-enhanced MRI in diagnosis of lung cancer and different types of benign lung nodules[J]. Chinese Journal of Magnetic Resonance Imaging,2018, 9(3): 192-196.] DOI: 10.12015/issn.1674-8034.2018.03.006.
13.王大勇,周青,方朋,等. 3.0T磁共振定量分析在肺癌诊断中的价值分析[J].中国CT和MRI杂志, 2019, 17(3): 7-10. [Wang DY, Zhou Q, Fang P, et al. Value of 3.0T magnetic resonance quantitative analysis in the diagnosis of lung cancer[J].Chinese Journal of CT and MRI, 2019, 17(3): 7-10.] DOI: 10.3969/j.issn.1672-5131.2019.03.003.
14.廖泽. DCE-MRI功能成像在不同病理类型肺癌中的差异及与Ki-67的相关性[J]. 甘肃医药, 2022, 41(9): 788-789, 805. [Liao Z. DCE-MRI functional imaging in different pathological types of lung cancer and correlation with Ki-67[J]. Gansu Medical Journal, 2022, 41(9): 788-789, 805.] DOI: 10.15975/j.cnki.gsyy.2022.09.009.
15.余景火, 杨华林, 宋铁军, 等. 3.0T DCE-MRI联合DWI成像在实性孤立性肺结节中的应用研究[J]. 沈阳医学院学报, 2020, 22(1): 25-29. [Yu JH, Yang HL, Song TJ, et al. Application of 3.0T DCE-MRI combined with DWI imaging in solid solitary pulmonary nodules[J]. Journal of Shenyang Medical College, 2020, 22(1): 25-29.] DOI: 10.16753/j.cnki.1008-2344.2020.01.006.