Objective To investigate the role of long non-coding RNA (lncRNA) associated with cuproptosis in clinical prognosis prediction and immunotherapy of laryngeal cancer.
Methods Genomes and clinical data from The Cancer Genome Atlas (TCGA) database were used to construct prognostic models by LASSO analysis and Cox regression analysis. Principal component analysis, time-dependent receiver operating characteristic (ROC) curve, and consistency index were used to evaluate their clinical efficacy. The prognostic value of the risk model was analyzed in terms of tumor mutation load, tumor immune dysfunction and exclusion, and stemness index. Finally, gene set enrichment analysis (GESA) was used to explore the cell function and pathway enrichment in high-risk model group.
Results Five prognostic models of lncRNA associated with cuproptosis were obtained. Principal component analysis, area under the curve (AUC) exceeding 0.8 for ROC curve, and the concordance index demonstrated the superior predictive capability of the established risk models. In high- and low-risk patients, the risk curves were not significantly correlated with immune-related function, but were negatively correlated with RNA stemness scores (r=-0.21, P=0.025). Enrichment analysis showed that the biological function of lncRNA was related to WNT signaling pathway.
Conclusion lncRNA associated with cuproptosis may be a new biomarker to predict the prognosis of laryngeal cancer, and may provide a new approach for the treatment of laryngeal cancer.
1.Li MM, Zhao S, Eskander A, et al. Stage migration and survival trends in laryngeal cancer[J]. Ann Surg Oncol, 2021, 28(12): 7300-7309. DOI: 10.1245/s10434-021-10318-1.
2.Han J, Sumer BD. The changing demographics and treatment of larynx cancer[J]. Ann Surg Oncol, 2021, 28(12): 6927-6928. DOI: 10.1245/s10434-021-10657-z.
3.Liu J, Lu Y, Dai Y, et al. A comprehensive analysis and validation of cuproptosis-associated genes across cancers: overall survival, the tumor microenvironment, stemness scores, and drug sensitivity[J]. Front Genet, 2022, 13: 939956. DOI: 10.3389/fgene.2022.939956.
4.Chamorro Petronacci CM, García García A, Padín Iruegas E, et al. Identification of prognosis associated microRNAs in HNSCC subtypes based on TCGA dataset[J]. Medicina (Kaunas), 2020, 56(10): 535. DOI: 10.3390/medicina 56100535.
5.Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death[J]. Cell Res, 2022, 32(5): 417-418. DOI: 10.1038/s41422-022-00653-7.
6.Oliveri V. Selective targeting of cancer cells by copper ionophores: an overview[J]. Front Mol Biosci, 2022, 9: 841814. DOI: 10.3389/fmolb.2022.841814.
7.Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function[J]. J Cell Biol, 2021, 220(2): e202009045. DOI: 10.1083/jcb.202009045.
8.Kang Z, Zhang C, Huangfu H. Exosomal lncRNA LINC02191 promotes laryngeal squamous cell carcinoma progression by targeting miR-204-5p/RAB22A axis and regulating PI3K/Akt/mTOR pathway[J]. Biochem Genet, 2023. DOI: 10.1007/s10528-023-10541-3.
9.Polishchuk EV, Merolla A, Lichtmannegger J, et al. Activation of autophagy, observed in liver tissues from patients with Wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis[J]. Gastroenterology, 2019, 156(4): 1173-1189. DOI: 10.1053/j.gastro.2018.11.032.
10.Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261. DOI: 10.1126/science.abf0529.
11.Dong J, Wang X, Xu C, et al. Inhibiting NLRP3 inflammasome activation prevents copper-induced neuropathology in a murine model of Wilson's disease[J]. Cell Death Dis, 2021, 12(1): 87. DOI: 10.1038/s41419-021-03397-1.
12.Wang F, Lin H, Su Q, et al. Cuproptosis-related lncRNA predict prognosis and immune response of lung adenocarcinoma[J]. World J Surg Oncol, 2022, 20(1): 275. DOI: 10.1186/s12957-022-02727-7.
13.Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response[J]. Nat Med, 2018, 24(10): 1550-1558. DOI: 10.1038/s415 91-018-0136-1.
14.Steuer CE, El-Deiry M, Parks JR, et al. An update on larynx cancer[J]. CA Cancer J Clin, 2017, 67(1): 31-50. DOI: 10.3322/caac.21386.
15.Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer[J]. Oncogene, 2017, 36(41): 5661-5667. DOI: 10.1038/onc.2017.184.
16.Liu T, Meng W, Cao H, et al. lncRNA RASSF8-AS1 suppresses the progression of laryngeal squamous cell carcinoma via targeting the miR-664b-3p/TLE1 axis[J]. Oncol Rep, 2020, 44(5): 2031-2044. DOI: 10.3892/or. 2020.7771.
17.Zhao D, Hou Y. Long non-coding RNA nuclear-enriched abundant transcript 1 (LncRNA NEAT1) upregulates Cyclin T2 (CCNT2) in laryngeal papilloma through sponging miR-577/miR-1224-5p and blocking cell apoptosis[J]. Bioengineered, 2022, 13(1): 1828-1837. DOI: 10.1080/21655979.2021.2017653.
18.Zheng P, Zhou C, Lu L, et al. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy[J]. J Exp Clin Cancer Res, 2022, 41(1): 271. DOI: 10.1186/s13046-022-02485-0.
19.Vishnubalaji R, Alajez NM. Epigenetic regulation of triple negative breast cancer (TNBC) by TGF-β signaling[J]. Sci Rep, 2021, 11(1): 15410. DOI: 10.1038/s41598-021-94514-9.
20.Jiang W, Song Y, Zhong Z, et al. Ferroptosis-related long non-coding RNA signature contributes to the prediction of prognosis outcomes in head and neck squamous cell carcinomas[J]. Front Genet, 2021, 12: 785839. DOI: 10.3389/fgene.2021.785839.
21.Xu S, Jia G, Zhang H, et al. LncRNA HOXB-AS3 promotes growth, invasion and migration of epithelial ovarian cancer by altering glycolysis[J]. Life Sci, 2021, 264: 118636. DOI: 10.1016/j.lfs.2020.118636.
22.Zhang XM, Chen H, Zhou B, et al. lncRNA HOXB-AS3 promotes hepatoma by inhibiting p53 expression[J]. Eur Rev Med Pharmacol Sci, 2018, 22(20): 6784-6792. DOI: 10.26355/eurrev_201810_16145.
23.Zhang D, Tang D, Liu PT, et al. Isolation of tumor stem-like cells from primary laryngeal squamous cell carcinoma cells (FD-LS-6)[J]. Hum Cell, 2024, 37(1): 323-336. DOI: 10.1007/s13577-023-00984-6.
24.Tang T, Shan G. DGCR5 promotes cancer stem cell-like properties of radioresistant laryngeal carcinoma cells by sponging miR-506 via Wnt pathway[J]. J Cell Physiol, 2019, 234(10): 18423-18431. DOI: 10.1002/jcp.28478.
25.Tagliabue M, Maffini F, Fumagalli C, et al. A role for the immune system in advanced laryngeal cancer[J]. Sci Rep, 2020, 10(1): 18327. DOI: 10.1038/s41598-020-73747-0.
26.Fusco MJ, West HJ, Walko CM. Tumor mutation burden and cancer treatment[J]. JAMA Oncol, 2021, 7(2): 316. DOI: 10.1001/jamaoncol.2020.6371.
27.Sheth S, Farquhar DR, Schrank TP, et al. Correlation of alterations in the KEAP1/CUL3/NFE2L2 pathway with radiation failure in larynx squamous cell carcinoma[J]. Laryngoscope Investig Otolaryngol, 2021, 6(4): 699-707. DOI: 10.1002/lio2.588.
28.Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use[J]. Cold Spring Harb Perspect Biol, 2010, 2(1): a001008. DOI: 10.1101/cshperspect.a001008.
29.Zheng QX, Wang J, Gu XY, et al. TTN-AS1 as a potential diagnostic and prognostic biomarker for multiple cancers[J]. Biomed Pharmacother, 2021, 135: 111169. DOI: 10.1016/j.biopha.2020.111169.