Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.7 Detail

Research progress on the effect and treatment of short-chain fatty acids on myocardial fibrosis

Published on Aug. 05, 2024Total Views: 1142 times Total Downloads: 325 times Download Mobile

Author: LIU Milin ZHAO Shengyu YAN Jirong PAN Yue QU Huiyan

Affiliation: Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China

Keywords: Myocardial fibrosis Short-chain fatty acids Immune inflammation Oxidative stress

DOI: 10.12173/j.issn.1004-4337.202401170

Reference: Liu ML, Zhao SY, Yan JR, Pan Y, Qu HY. Research progress on the effect and treatment of short-chain fatty acids on myocardial fibrosis[J]. Journal of Mathematical Medicine, 2024, 37(7): 526-533. DOI: 10.12173/j.issn.1004-4337.202401170[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

In recent years, the morbidity and mortality of cardiovascular diseases have been increasing in China, and as an important pathological basis for the occurrence of heart diseases and the deterioration of heart function, myocardial fibrosis (MF) has received more and more attention. With the development of experimental methods such as high-throughput sequencing, the role of intestinal flora and its metabolites in the treatment of digestive system diseases, circulatory system diseases, and immune system diseases have gradually emerged. In this paper, the effect of short-chain fatty acids, one of the metabolites of intestinal flora, on MF,  was discussed, to provide a new direction for the prevention and treatment of MF.

Full-text
Please download the PDF version to read the full text: download
References

1.Kurose H. Cardiac fibrosis and fibroblasts[J]. Cells, 2021, 10(7): 1716. DOI: 10.3390/cells10071716.

2.Rockey DC, Bell PD, Hill JA. Fibrosis—a common pathway to organ injury and failure[J]. N Engl J Med, 2015, 372(12): 1138-1149. DOI: 10.1056/NEJMra1300575.

3.Rubino M, Travers JG, Headrick AL, et al. Inhibition of eicosanoid degradation mitigates fibrosis of the heart[J]. Circ Res, 2023, 132(1): 10-29. DOI: 10.1161/CIRCRESAHA.122.321475.

4.Kong P, Shinde AV, Su Y, et al. Opposing actions of fibroblast and cardiomyocyte Smad3 signaling in the infarcted myocardium[J]. Circulation, 2018, 137(7): 707-724. DOI: 10.1161/CIRCULATIONAHA.117.029622.

5.Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling[J]. Nat Rev Cardiol, 2014, 11(5): 255-265. DOI: 10.1038/nrcardio. 2014.28.

6.Lewis GA, Dodd S, Naish JH, et al. Considerations for clinical trials targeting the myocardial interstitium[J]. JACC Cardiovasc Imaging, 2019, 12(11 Pt 2): 2319-2331. DOI: 10.1016/j.jcmg.2019.03.034.

7.Okada H, Takemura G, Kosai K, et al. Postinfarction gene therapy against transforming growth factor- beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure[J]. Circulation, 2005, 111(19): 2430-2437. DOI: 10.1161/01.CIR. 0000165066.71481.8E.

8.Zeng KF, Wang HJ, Deng B, et al. Ethyl ferulate suppresses post-myocardial infarction myocardial fibrosis by inhibiting transforming growth factor receptor 1[J]. Phytomedicine, 2023, 121(12): 155118. DOI: 10.1016/j. phymed.2023.155118.

9.Hafstad AD, Lund J, Hadler-Olsen E, et al. High- and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity[J]. Diabetes, 2013, 62(7): 2287-2294. DOI: 10.2337/db12-1580.

10.Nguyen MT, Lee MA, Kim YK, et al. The matricellular protein CCN5 induces apoptosis in myofibroblasts through SMAD7-mediated inhibition of NFκB[J]. PLoS One, 2022,17(8): e0269735. DOI: 10.1371/journal.pone. 0269735.

11.Kolkhof P, Delbeck M, Kretschmer A, et al. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury[J]. J Cardiovasc Pharmacol, 2014, 64(1): 69-78. DOI: 10.1097/FJC.0000000000000091.

12.Zannad F, Alla F, Dousset B, et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators[J]. Circulation, 2000, 102(22): 2700-2706. DOI: 10.1161/01.cir.102.22.2700.

13.Li X, Li L, Lei W, et al. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: pharmacology and mechanisms[J]. Biomed Pharmacother, 2021, 142: 111979. DOI: 10.1016/j.biopha.2021.111979.

14.Nishitsuji K, Xiao J, Nagatomo R, et al. Analysis of the gut microbiome and plasma short-chain fatty acid profiles in a spontaneous mouse model of metabolic syndrome[J]. Sci Rep, 2017, 7(1): 15876. DOI: 10.1038/s41598-017-16189-5.

15.Badejogbin C, Areola DE, Olaniyi KS, et al. Sodium butyrate recovers high-fat diet-fed female Wistar rats from glucose dysmetabolism and uric acid-associated cardiac tissue damage[J]. Naunyn Schmiedebergs Arch Pharmacol, 2019, 392(11): 1411-1419. DOI: 10.1007/s00210-019-01679-2.

16.Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345. DOI: 10.1016/j.cell.2016.05.041.

17.Esquivel-Elizondo S, Ilhan ZE, Garcia-Peña EI, et al. Insights into butyrate production in a controlled fermentation system via gene predictions[J]. mSystems, 2017, 2(4): e00051-17. DOI: 10.1128/mSystems.00051-17.

18.Ueki T, Nevin KP, Woodard TL, et al. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii[J]. mBio, 2014, 5(5): e01636-14. DOI: 10.1128/mBio.01636-14.

19.Li Z, Wright AD, Liu H, et al. Bacterial community composition and fermentation patterns in the rumen of sika deer (Cervus nippon) fed three different diets[J]. Microb Ecol, 2015, 69(2): 307-318. DOI: 10.1007/s00248-014-0497-z.

20.Li Z, Wu Z, Yan J, et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis[J]. Lab Invest, 2019, 99(3): 346-357. DOI: 10.1038/s41374-018-0091-y.

21.Miele L, Giorgio V, Alberelli MA, et al. Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk[J]. Curr Cardiol Rep, 2015, 17(12): 120. DOI: 10.1007/s11886-015-0671-z.

22.Zhou M, Li D, Xie K, et al. The short-chain fatty acid propionate improved ventricular electrical remodeling in a rat model with myocardial infarction[J]. Food Funct, 2021, 12(24): 12580-12593. DOI: 10.1039/d1fo02040d.

23.Li Z, Nie M, Yu L, et al. Blockade of the notch signaling pathway promotes M2 macrophage polarization to suppress cardiac fibrosis remodeling in mice with myocardial infarction[J]. Front Cardiovasc Med, 2022, 17(8): 639476. DOI: 10.3389/fcvm.2021.639476.

24.Cheng Y, Rong J. Macrophage polarization as a therapeutic target in myocardial infarction[J]. Curr Drug Targets, 2018, 19(6): 651-662. DOI: 10.2174/1389450118666171031115025.

25.施珺菁,杨嘉丽,马乃骐,等. 电针对心肌缺血损伤小鼠心肌组织中巨噬细胞极化和TLR4、MyD88表达的影响[J]. 南京中医药大学学报, 2023, 39(4): 319-327. [Shi JJ, Yang JL, Ma NQ, et al. Electroacupuncture influences macrophage M2 polarization and TLR4 and MyD88 expression in myocardial tissue of Myo-cardial ischemia injury mice[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2023, 39(4): 319-327.] DOI: 10.14148/j.issn.1672-0482.2023.0319.

26.Deng S, Zhou X, Ge Z, et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization[J]. Int J Biochem Cell Biol, 2019, 114: 105564. DOI: 10.1016/j.biocel.2019.105564.

27.Zhang J, Huang F, Chen L, et al. Sodium lactate accelerates M2 macrophage polarization and improves cardiac function after myocardial infarction in mice[J]. Cardiovasc Ther, 2021, 2021(5): 5530541. DOI: 10.1155/2021/5530541.

28.Ploeger DT, Hosper NA, Schipper M, et al. Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts[J]. Cell Commun Signal, 2013, 11(1): 29. DOI: 10.1186/1478-811X-11-29.

29.孙奇林,陈雯洁,赵雪兰,等. 黄芪多糖下调心肌p38和核因子κB的磷酸化改善老年糖尿病鼠心脏功能 [J]. 老年医学与保健, 2021, 27(2): 399-404. [Sun  QL, Chen  WJ, Zhao XL, et al. Astragalus polysaccharide down-regulates the phosphorylation of myocardial p38 and nuclear factor-κB and improves heart function of elderly diabetic mice[J]. Geriatrics & Health Care, 2021, 27(2): 399-404.] DOI: 10.3969/j.issn.1008-8296.2021.02.048.

30.Zhou MM, Li DW, Xu L, et al. Propionate alleviated post-infarction cardiac dysfunction by macrophage polarization in a rat model[J]. Int Immunopharmacol, 2023, 115: 109618. DOI: 10.1016/j.intimp.2022.109618.

31.Li X, Li R, You N, et al. Butyric acid ameliorates myocardial fibrosis by regulating M1/M2 polarization of macrophages and promoting recovery of mitochondrial function[J]. Front Nutr, 2022, 9: 875473. DOI: 10.3389/fnut.2022.875473.

32.Russo M, Guida F, Paparo L, et al. The novel butyrate derivative phenylalanine-butyramide protects from doxorubicin-induced cardiotoxicity[J]. Eur J Heart Fail, 2019, 21(4): 519-528. DOI: 10.1002/ejhf.1439.

33.Kaye DM, Shihata WA, Jama HA, et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease[J]. Circulation, 2020, 141(17): 1393-1403. DOI: 10.1161/CIRCULATIONAHA.119.043081.

34.Bartolomaeus H, Balogh A, Yakoub M, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage[J]. Circulation, 2019, 139(11): 1407-1421. DOI: 10.1161/CIRCULATIONAHA.118.036652.

35.Tang TWH, Chen HC, Chen CY, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair[J]. Circulation, 2019, 139(5): 647-659. DOI: 10.1161/CIRCULATIONAHA.118.035235.

36.侯冬强,赵红霞,彭凯,等. 丁酸钠的生物学功能及其在动物生产中的应用[J]. 动物营养学报, 2023, 35(4): 2119-2128. [Hou DQ, Zhao HX, Peng K, et al. Biological functions of sodium butyrate and its application in animal production[J]. Chinese Journal of Animal Nutrition, 2023, 35(4): 2119-2128.] DOI: 10.12418/CJAN2023.200.

37.Olaniyi KS, Amusa OA, Areola ED, et al. Suppression of HDAC by sodium acetate rectifies cardiac metabolic disturbance in streptozotocin-nicotinamide-induced diabetic rats[J]. Exp Biol Med (Maywood), 2020, 245(7): 667-676. DOI: 10.1177/1535370220913847.

38.Mikelsaar M, Zilmer M. Lactobacillus fermentum ME- 3  - an antimicrobial and antioxidative probiotic[J]. Microb Ecol Health Dis, 2009, 21(1): 1-27. DOI: 10.1080/ 08910600902815561.

39.Merry TL, Chan A, Woodhead JST, et al. Mitochondrial-derived peptides in energy metabolism[J]. Am J Physiol Endocrinol Metab, 2020, 319(4): E659-E666. DOI: 10.1152/ajpendo.00249.2020.

40.Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis[J]. Cell, 2015, 163(3): 560-569. DOI: 10.1016/j.cell.2015.10.001.

41.Willems PH, Rossignol R, Dieteren CE, et al. Redox homeostasis and mitochondrial dynamics[J]. Cell Metab, 2015, 22(2): 207-218. DOI: 10.1016/j.cmet.2015.06.006.

42.Tallquist MD, Molkentin JD. Redefining the identity of cardiac fibroblasts[J]. Nat Rev Cardiol, 2017, 14(8): 484-491. DOI: 10.1038/nrcardio.2017.57.

43.Chen CY, Li SJ, Wang CY, et al. The impact of DRP1 on myocardial fibrosis in the obese minipig[J]. Eur J Clin Invest, 2020, 50(3): e13204. DOI: 10.1111/eci.13204.

44.Wang J, Chen P, Cao Q, et al. Traditional Chinese medicine Ginseng Dingzhi Decoction ameliorates myocardial fibrosis and high glucose-induced cardiomyocyte injury by regulating intestinal flora and mitochondrial dysfunction[J]. Oxid Med Cell Longev, 2022, 2022: 9205908. DOI: 10.1155/2022/9205908.

45.Shao BZ, Xu ZQ, Han BZ, et al. NLRP3 inflammasome and its inhibitors: a review[J]. Front Pharmacol, 2015, 6: 262. DOI: 10.3389/fphar.2015.00262.

46.Suetomi T, Willeford A, Brand CS, et al. Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca2+/calmodulin-dependent protein kinase II δ signaling in cardiomyocytes are essential for adverse cardiac remodeling[J]. Circulation, 2018, 138(22): 2530-2544. DOI: 10.1161/CIRCULATIONAHA.118. 034621.

47.Yao C, Veleva T, Scott L Jr, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation[J]. Circulation, 2018, 138(20): 2227-2242. DOI: 10.1161/CIRCULATIONAHA.118.035202.

48.Zuo K, Fang C, Liu Z, et al. Commensal microbe-derived SCFA alleviates atrial fibrillation via GPR43/NLRP3 signaling[J]. Int J Biol Sci, 2022, 18(10): 4219-4232. DOI: 10.7150/ijbs.70644.

49.Zhang J, Zuo K, Fang C, et al. Altered synthesis of genes associated with short-chain fatty acids in the gut of patients with atrial fibrillation[J]. BMC Genomics, 2021, 22(1): 634. DOI: 10.1186/s12864-021-07944-0.

50.Kao AC, Chan KW, Anthony DC, et al. Prebiotic reduction of brain histone deacetylase (HDAC) activity and olanzapine-mediated weight gain in rats, are acetate independent[J]. Neuropharmacology, 2019, 150: 184-191. DOI: 10.1016/j.neuropharm.2019.02.014.

51.Filgueiras LR, Brandt SL, Ramalho TR, et al. Imbalance between HDAC and HAT activities drives aberrant STAT1/MyD88 expression in macrophages from type 1 diabetic mice[J]. J Diabetes Complications, 2017, 31(2): 334-339. DOI: 10.1016/j.jdiacomp.2016.08.001.

52.Beharry AW, Judge AR. Differential expression of HDAC and HAT genes in atrophying skeletal muscle[J]. Muscle Nerve, 2015, 52(6): 1098-1101. DOI: 10.1002/mus.24912.

53.Steliou K, Boosalis MS, Perrine SP, et al. Butyrate histone deacetylase inhibitors[J]. Biores Open Access, 2012, 1(4): 192-198. DOI: 10.1089/biores.2012.0223.

54.Nural-Guvener H, Zakharova L, Feehery L, et al. Anti-fibrotic effects of class I HDAC inhibitor, mocetinostat is associated with IL-6/Stat3 signaling in ischemic heart failure[J]. Int J Mol Sci, 2015, 16(5): 11482-11499. DOI: 10.3390/ijms160511482.

55.季超,刘芳洁. 基于肠道菌群-短链脂肪酸探讨宣肺散结汤对肺癌小鼠肿瘤抑制与免疫功能的影响[J]. 长春中医药大学学报, 2024, 40(4): 404-408. [Ji C, Liu FJ. Exploration of the effects of Xuanfei Sanjie decoction on tumor inhibition and immune function in lung cancer mice based on intestinal flora-short-chain fatty acids[J]. Journal of Changchun University of Chinese Medicine, 2024, 40(4): 404-408.] DOI: 10.13463/j.cnki.cczyy.2024.04.013.

56.唐敏,刘鸿,王丽琴. 温针灸联合药饼灸治疗腹泻型肠易激综合征疗效观察及对肠道菌群的影响[J]. 新中医, 2024, 56(6): 100-104. [Tang M, Liu H, Wang LQ. Curative effect of warming-needle moxibustion combined with herbal cake-separated moxibustion on irritable bowel syndrome with diarrhea and its effect on intestinal flora[J]. Journal of New Chinese Medicine, 2024, 56(6): 100-104.] DOI: 10.13457/j.cnki.jncm.2024.06.019.

57.付稀钰,赵敏洁,冯凤琴. 中链脂肪酸基于肠道微生态改善代谢综合征的研究进展[J]. 食品科学, 2023, 44(19): 417-428. [Fu XJ, Zhao MJ, Feng FQ. Research progress on the role of medium-chain fatty acids in improving metabolic syndrome by regulating intestinal microecology[J]. Food Science, 2023, 44(19): 417-428.] DOI: 10.7506/spkx1002-6630-20220801-003.

58.Vitale M, Giacco R, Laiola M, et al. Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional mediterranean dietary pattern: can SCFAs play a role?[J]. Clin Nutr, 2021, 40(2): 428-437. DOI: 10.1016/j.clnu.2020.05.025.

59.Guo Y, Luo S, Ye Y, et al. Intermittent fasting improves cardiometabolic risk factors and alters gut microbiota in metabolic syndrome patients[J]. J Clin Endocrinol Metab, 2021, 106(1): 64-79. DOI: 10.1210/clinem/dgaa644.

60.Battson ML, Lee DM, Li Puma LC, et al. Gut microbiota regulates cardiac ischemic tolerance and aortic stiffness in obesity[J]. Am J Physiol Heart Circ Physiol, 2019, 317(6): H1210-H1220. DOI: 10.1152/ajpheart.00346.2019.

61.黄芳,刘军梅. 急性脑梗死患者血清IL-17和IL-33表达与肠道菌群分布的相关性[J]. 中国病原生物学杂志, 2024, 19(1): 70-73, 78. [Huang F, Liu JM. Correlation between the expression of serum IL-17 and IL-33 and the distribution of intestinal flora in patients with acute cerebral infarction[J]. Journal of Parasitic Biology, 2024, 19(1): 70-73, 78.] DOI: 10.13350/j.cjpb.240114.

62.劳雪莲,沈丽丽,陈艳红,等. 不同年龄非酒精性单纯性脂肪肝患者受控衰减参数、血脂、肠道菌群与颈动脉粥样硬化的关系[J]. 中国老年学杂志, 2023, 43(11): 2619-2623. [Lao XL, Shen LL, Chen  YH, et al. Relationship between controlled attenuation parameters, blood lipids, intestinal microbiota and carotid atherosclerosis in patients with nonalcoholic simple fatty liver disease of different ages[J]. Chinese Journal of Gerontology, 2023, 43(11): 2619-2623.] DOI: 10.3969/j.issn.1005-9202.2023.11.017.

63.陈丽娜,李森浩,周军,等. 益生菌对心力衰竭患者再入院率及肠道菌群代谢产物氧化三甲胺的干预效果研究[J]. 心电与循环, 2023, 42(6): 515-519. [Chen LN, Li SH, Zhou J, et al. Effect of probiotics on readmission rate and gut microbiota derived trimethylamine oxide in patients with heart failure[J]. Journal of Electrocardiology and Circulation, 2023, 42(6): 515-519.] DOI: 10.12124/j.issn.2095-3933.2023.6.2022-5047.

64.贾秋瑾,吕仕超,张军平. 慢性心力衰竭患者肠道菌群改变的系统评价[J]. 中华心血管病杂志, 2021, 49(10): 1012-1019. [Jia QJ, Lyu SC, Zhang JP. Systematic review of gut microbiota changes in patients with chronic heart failure[J]. Chinese Journal of Cardiology, 2021, 49(10): 1012-1019.] DOI: 10.3760/cma.j.cn112148-20210831-00754.

65.Li H, Liu F, Lu J, et al. Probiotic mixture of Lactobacillus plantarum strains improves lipid metabolism and gut microbiota structure in high fat diet-fed mice[J]. Front Microbiol, 2020, 11: 512. DOI: 10.3389/fmicb.2020.00512.

66.彭岚玉,李定祥,姚敬心,等. 基于肠道菌群及其代谢产物SCFA探讨左归降糖通脉方对2型糖尿病大鼠糖脂代谢的影响[J]. 湖南中医药大学学报, 2024, 44(3): 365-373. [Peng LY, Li DX, Yao JX, et al. Effects of Zuogui Jiangtang Tongmai Formula on glucolipid metabolism in type 2 diabetic rats based on intestinal flora and its metabolite SCFA[J]. Journal of Traditional Chinese Medicine University of Hunan, 2024, 44(3): 365-373.] DOI: 10.3969/j.issn.1674-070X.2024.03.004.

67.Zhang L, Deng M, Lu A, et al. Sodium butyrate attenuates angiotensin II-induced cardiac hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6-dependent mechanism[J]. J Cell Mol Med, 2019, 23(12): 8139-8150. DOI: 10.1111/jcmm.14684.

Popular papers
Last 6 months