Objective To systematically evaluate the risk prediction model of pancreatic fistula after pancreaticoduodenectomy, and to provide a reference for clinical selection of risk assessment tools.
Methods The relevant literature published in PubMed, Embase, the Cochrane Library, Web of Science, CNKI, WanFang Data, VIP and SinoMed from January 1, 2016 to April 17, 2024 were searched. The PROBAST risk of bias assessment tool was used to assess the included studies, and Stata 16.0 software was used to perform Meta-analysis of common predictors included in the risk prediction model.
Results A total of 27 studies were included. All studies reported model discrimination, 14 studies reported calibration. The area under the curve (AUC) of the receiver operator characteristic curve of the constructed model included in the study ranged from 0.620 to 0.970, the AUC of the internal validation model ranged from 0.620 to 0.915, and the AUC of the external validation model ranged from 0.744 to 0.849. The most common predictors of the included models were pancreatic texture, body mass index (BMI), pancreatic duct diameter, abdominal drainage amylase level on the 1st postoperative day, preoperative albumin level, and intraoperative bleeding loss. The risk of bias was high in all studies, and the applicability of the included studies was good.
Conclusion The modeling quality of the risk prediction model of the pancreatic fistula after pancreaticoduodenectomy was poor, and the clinical application of the model need to be validated. In future studies, external validation and recalibration of the existing model can be considered, or a new prediction model can be constructed and verified by referring to methodological guidelines.
1.Xu S, Zhang XP, Zhao GD, et al. Development and validation of an online calculator to predict early recurrence and long-term survival in patients with distal cholangiocarcinoma after pancreaticoduodenectomy[J]. J Hepatobiliary Pancreatic Sci, 2022, 29(11): 1214-1225. DOI: 10.1002/jhbp.1058.
2.张丹阳, 雷鹏, 张宇波, 等. 胰十二指肠切除术后临床相关胰瘘风险预测模型构建及验证[J]. 中国普通外科杂志, 2024, 33(3): 366-375. [Zhang DY, Lei P, Zhang YB, et al. Construction and validation of a risk prediction model for clinically relevant pancreatic fistula after pancreaticoduodenectomy[J]. China Journal of General Surgery, 2024, 33(3): 366-375.] DOI: 10.7659/j.issn.1005-6947.2024.03.007.
3.郑继盛, 苏云, 宫淑萍, 等. 胰十二指肠切除术后胰瘘风险预测模型研究进展[J]. 护理研究, 2022, 36(20): 3636-3639. [Zheng JS, Su Y, Gong SP, et al. Research progress on risk prediction model of pancreatic fistula after pancreaticoduodenectomy[J]. Chinese Nursing Research, 2022, 36(20): 3636-3639.] DOI: 10.12102/j.issn.1009-6493.2022.20.012.
4.Han IW, Cho K, Ryu Y, et al. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence[J]. World J Gastroenterol, 2020, 26(30): 4453-4464. DOI: 10.3748/wjg.v26.i30.4453.
5.Li YT, Zhang HY, Xing C, et al. Effect of Blumgart anastomosis in reducing the incidence rate of pancreatic fistula after pancreatoduodenectomy[J]. World J Gastroenterol, 2019, 25(20): 2514-2523. DOI: 10.3748/wjg.v25.i20.2514.
6.Bassi C, Dervenis C, Butturini G, et al. Postoperative pancreatic fistula: an international study group (ISGPF) definition[J]. Surgery, 2005, 138(1): 8-13. DOI: 10.1016/j.surg.2005.05.001.
7.Tomimaru Y, Takeda Y, Kobayashi S, et al. Comparison of postoperative morphological changes in remnant pancreas between pancreaticojejunostomy and pancreaticogastrostomy after pancreaticoduodenectomy[J]. Pancreas, 2009, 38(2): 203-207. DOI: 10.1097/MPA. 0b013e31818e1772.
8.Ke Z, Cui J, Hu N, et al. Risk factors for postoperative pancreatic fistula: analysis of 170 consecutive cases of pancreaticoduodenectomy based on the updated ISGPS classification and grading system[J]. Medicine(Baltimore), 2018, 97(35): e12151. DOI: 10.1097/MD.0000000000012151.
9.Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist[J]. PLoS Med, 2014, 11(10): e1001744. DOI: 10.1371/journal.pmed.1001744.
10.Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies[J]. Ann Intern Med, 2019, 170(1): 51-58. DOI: 10.7326/M18-1376.
11.吴耐, 张蓬波, 任泽强. 胰十二指肠切除术后胰瘘发生的危险因素及风险预测[J]. 中国普外基础与临床杂志, 2018, 25(7): 889-894. [Wu N, Zhang PB, Ren ZQ. Risk factors and risk prediction of pancreatic fistula after pancreaticoduodenectomy[J]. Chinese Journal of Basic and Clinics in General Surgery, 2018, 25(7): 889-894.] DOI: 10.7507/1007-9424.201708054.
12.吴浩然. 腹腔镜胰十二指肠切除术术后并发症危险因素分析及术后胰瘘风险预测模型[D]. 衡阳: 南华大学, 2019. [Wu HR. Analysis of risk factors for postoperative complications of laparoscopic pancreaticoduodenectomy and risk prediction model for postoperative pancreatic fistula[D]. Hengyang: University of South China, 2019.] DOI: 10.27234/d.cnki.gnhuu.2019.000176.
13.夏武政. 胰十二指肠切除术后胰瘘风险评估模型的建立和临床验证[D]. 广州: 南方医科大学, 2019. [Xia WZ. Establishment and clinical validation of a predictive model for the risk assessment of pancreatic fistula after pancreaticoduodenectomy[D]. Guangzhou: Southern Medical University, 2019.] https://www.cqvip.com/doc/degree/1868524527
14.曹昕彤, 申鼎成, 黄耿文, 等. 胰十二指肠切除术后胰瘘的预测因素筛选及预测模型构建的单中心前瞻性研究[J]. 中国普通外科杂志, 2019, 28(9): 1115-1122. [Cao XT, Shen DC, Huang GW, et al. A single center prospective study of screening predictive factors and building predictive model for postoperative pancreatic fistula after pancreaticoduodenectomy[J]. China Journal of General Surgery, 2019, 28(9): 1115-1122.] DOI: 10.7659/j.issn.1005-6947.2019.09.013.
15.Li Y, Zhou F, Zhu DM, et al. Novel risk scoring system for prediction of pancreatic fistula after pancreaticoduodenectomy[J]. World J Gastroenterol, 2019, 25(21): 2650-2664. DOI: 10.3748/wjg.v25.i21.2650.
16.刘少东. 胰十二指肠切除术后胰瘘危险因素分析及风险预测[D]. 太原: 山西医科大学, 2020. [Liu SD. Risk factors analysis and risk prediction of pancreatic fistula after pancreaticoduodenectomy[D]. Taiyuan: Shanxi Medical University, 2020.] DOI: 10.27288/d.cnki.gsxyu.2020.000434.
17.李轲. 胰十二指肠切除术后临床相关胰瘘预测因素的筛选与预测模型的构建[D]. 南昌: 南昌大学, 2020. [Li K. Screening predictive factors and the establishment of predictionmodel of clinically relevant postoperative pancreatic fistula afterpancreaticoduodenectomy[D]. Nanchang: Nanchang University, 2020.] DOI: 10.27232/d.cnki.gnchu.2020.000490.
18.徐西伯, 贾成朋, 贾勇, 等. 构建胰十二指肠切除术后胰瘘预测模型及其应用价值[J]. 中华消化外科杂志, 2020, 19(4): 408-413. [Xu XB, Jia CP, Jia Y, et al. Construction and application value of prediction model of pancreatic fistula after pancreaticoduodenectomy[J]. Chinese Journal of Digestive Surgery, 2020, 19(4): 408-413.] DOI: 10.3760/cma.j.cn115610-20200409-00240.
19.Huang XT, Huang CS, Liu C, et al. Development and validation of a new nomogram for predicting clinically relevant postoperative pancreatic fistula after pancreatoduodenectomy[J]. World J Surg, 2021, 45(1): 261-269. DOI: 10.1007/s00268-020-05773-y.
20.孙毅, 林先盛. 替代胰瘘风险预测系统在胰十二指肠切除术后胰瘘的预测价值[J]. 肝胆外科杂志, 2021, 29(3): 182-186. [Sun Y, Lin XS. The clinical predictive value of alternative fistula risk score for pancreatoduodenectomy[J]. Journal of Hepatobiliary Surgery, 2021, 29(3): 182-186.] DOI: 10.3969/j.issn.1006-4761.2021.03.008.
21.Shen J, Guo F, Sun Y, et al. Predictive nomogram for postoperative pancreatic fistula following pancreaticoduodenectomy: a retrospective study[J]. BMC Cancer, 2021, 21(1): 550. DOI: 10.1186/s12885-021-08201-z.
22.Liu R, Cai Y, Cai H, et al. Dynamic prediction for clinically relevant pancreatic fistula: a novel prediction model for laparoscopic pancreaticoduodenectomy[J]. BMC Surg, 2021, 21(1): 7. DOI: 10.1186/s12893-020-00968-5.
23.张佳帏. 胰十二指肠切除术后胰瘘风险预测模型的构建与验证[D]. 大连: 大连医科大学, 2022. [Zhang JW. Construction and validation of a risk prediction model for pancreatic fistula after pancreaticoduodenectomy[D]. Dalian: Dalian Medical University, 2022.] DOI: 10.26994/d.cnki.gdlyu.2022.000365.
24.张博琳. 胰十二指肠切除术后临床相关胰瘘的预测风险评分系统[D]. 大连: 大连医科大学, 2022. [Zhang BL. A predictive risk scoring system for clinically relevant pancreatic fistula after pancreaticoduodenectomy[D]. Dalian: Dalian Medical University, 2022.] DOI: 10.26994/d.cnki.gdlyu.2022.000727.
25.刘香玉, 郑冲, 陈鑫, 等. 腹腔镜胰十二指肠根治术后胰瘘风险预测模型开发及验证[J].中国实验诊断学, 2023, 27(2): 204-209. [Liu XY, Zheng C, Chen X, et al. Development and validation of a risk prediction model for pancreatic fistula after laparoscopic radical pancreatoduodenectomy[J]. Chinese Journal of Laboratory Diagnosis, 2023, 27(2): 204-209.] DOI: 10.3969/j.issn.1007-4287.2023.02.021.
26.夏绍萱. 腹腔镜胰十二指肠切除术后胰瘘的危险因素与风险预测[D]. 贵阳: 贵州医科大学, 2023. [Xia SX. Risk factors analysis and prediction of postoperativepancreatic fistula after laparoscopicpancreaticoduodenectomy[D]. Guiyang: Guizhou Medical University, 2023.] DOI: 10.27045/d.cnki.ggyyc.2023.000035.
27.刘武超. 胰十二指肠术后临床相关胰瘘的临床特征与影响因素研究[D]. 上海: 中国人民解放军海军军医大学, 2023. [Liu WC. Study on clinical characteristics and influencing factors of clinically relevant pancreatic fistula after pancreaticoduodenectomy[D]. Shanghai: Naval Medical University, 2023.] DOI: 10.26998/d.cnki.gjuyu.2023.000293.
28.周黎晨. 胰十二指肠切除术后胰瘘预测模型建立与验证[D]. 泸州: 西南医科大学, 2023. [Zhou LC. Predictive model and validation of pancreatic fistula after pancreaticoduodenectomy[D]. Luzhou: Southwest Medical University, 2023.] DOI: 10.27215/d.cnki.glzyu.2023. 000038.
29.史小琼. 基于MRI组学及临床影像特征列线图预测胰十二指肠切除术后胰瘘的价值[D]. 兰州: 兰州大学, 2023. [Shi XQ. The value of nomogram based on MRI radiomics and clinical imaging characteristics in predicting pancreatic fistula after pancreaticoduodenectomy[D]. Lanzhou: Lanzhou University, 2023.] DOI: 10.27204/d.cnki.glzhu.2023.001494.
30.He C, Zhang Y, Li L, et al. Risk factor analysis and prediction of postoperative clinically relevant pancreatic fistula after distal pancreatectomy[J]. BMC Surg, 2023, 23(1): 5. DOI: 10.1186/s12893-023-01907-w.
31.Zheng J, Lv X, Jiang L, et al. Development of a pancreatic fistula prediction model after pancreaticoduodenectomy based on a decision tree and random forest algorithm[J]. Am Surg, 2023, 17: 31348231158692. DOI: 10.1177/ 00031348231158692.
32.Gu Z, Du Y, Wang P, et al. Development and validation of a novel nomogram to predict postoperative pancreatic fistula after pancreatoduodenectomy using lasso-logistic regression: an international multi-institutional observational study[J]. Int J Surg, 2023, 109(12): 4027-4040. DOI: 10.1097/JS9.0000000000000695.
33.余俊, 任超逸, 崔巍, 等. 胰十二指肠切除术后胰瘘风险预测模型的建立: 基于2016新版胰瘘定义及分级系统[J]. 临床肝胆病杂志, 2024, 40(4): 773-781. [Yu J, Ren CY, Cui W, et al. Establishment of a risk prediction model for pancreatic fistula after pancreaticoduodenectomy: a study based on the 2016 edition of the definition and classification system of pancreatic fistula[J]. Journal of Clinical Hepatology, 2024, 40(4): 773-781.] DOI: 10.12449/JCH240421.
34.Lee W, Park HJ, Lee HJ, et al. Deep learning-based prediction of post-pancreaticoduodenectomy pancreatic fistula[J]. Sci Rep, 2024, 14(1): 5089. DOI: 10.1038/s41598-024-51777-2.
35.Zhu Y, Wu D, Yang H, et al. Analysis of factors influencing pancreatic fistula after minimally invasive pancreaticoduodenectomy and establishment of a new prediction model for clinically relevant pancreatic fistula[J]. Surg Endosc, 2024, 38(5): 2622-2631. DOI: 10.1007/s00464-024-10770-6.
36.Akgul O, Merath K, Mehta R, et al. Postoperative pancreatic fistula following pancreaticoduodenectomy-stratification of patient risk[J]. J Gastrointest Surg, 2019, 23(9): 1817-1824. DOI: 10.1007/s11605-018-4045-x.
37.Schuh F, Mihaljevic AL, Probst P, et al. A simple classification of pancreatic duct size and texture predicts postoperative pancreatic fistula: a classification of the international study group of pancreatic surgery[J]. Ann Surg, 2023, 277(3): e597-e608. DOI: 10.1097/SLA.0000000000004855.
38.Mathur A, Pitt HA, Marine M, et al. Fatty pancreas: a factor in postoperative pancreatic fistula[J]. Ann Surgery, 2007, 246(6): 1058-1064. DOI: 10.1097/SLA.0b013e31814a6906.
39.Khuri S, Mansour S, Obeid A, et al. Postpancreatoduodenectomy hemorrhage: association between the causes and the severity of the bleeding[J]. Visc Med, 2021, 37(3): 171-179. DOI: 10.1159/000509894.
40.Casadei R, Ricci C, Taffurelli G, et al. Are there preoperative factors related to a "soft pancreas" and are they predictive of pancreatic fistulas after pancreatic resection?[J]. Surg Today, 2015, 45(6): 708-714. DOI: 10.1007/s00595-014-1045-7.
41.Roberts KJ, Sutcliffe RP, Marudanayagam R, et al. Scoring system to predict pancreatic fistula after pancreaticoduodenectomy: a UK multicenter study[J]. Ann Surg, 2015, 261(6): 1191-1197. DOI: 10.1097/SLA.0000000000000997.
42.陈君茹, 朱永胜. 胰十二指肠切除术后腹腔引流液淀粉酶测定的价值[J]. 实用临床医药杂志, 2014, 18(23): 166-167. [Chen JR, Zhu YS. Value of amylase measurement of abdominal drainage fluid after pancreaticoduodenectomy[J]. Journal of Clinical Medicine in Practice, 2014, 18(23): 166-167.] DOI: 10.7619/jcmp.201423068.
43.Gruppo M, Angriman I, Martella B, et al. Perioperative albumin ratio is associated with post-operative pancreatic fistula[J]. ANZ J Surg, 2018, 88(7-8): E602-E605. DOI: 10.1111/ans.14262.
44.Sakamoto T, Yagyu Y, Uchinaka EI, et al. Predictive significance of C-reactive protein-to-albumin ratio for postoperative pancreatic fistula after pancreaticoduodenectomy[J]. Anticancer Res, 2019, 39(11): 6283-6290. DOI: 10.21873/anticanres.13838.
45.Casciani F, Trudeau MT, Aabun HJ, et al. The effect of high intraoperative blood loss on pancreatic fistula development after pancreatoduodenectomy: an international, multi-institutional propensity score matched analysis[J]. Surgery, 2021, 170(4): 1195-1204. DOI: 10.1016/j.surg.2021.03.044.
46.Enzi G, Gasparo M, Biondetti PR, et al. Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomography[J]. Am J Clin Nutr, 1986, 44(6): 739-746. DOI: 10.1093/ajcn/44.6.739.
47.Rosso E, Casnedi S, Pessaux P, et al. The role of "fatty pancreas" and of BMI in the occurrence of pancreatic fistula after pancreaticoduodenectomy[J]. J Gastrointest Surg, 2009, 13(10): 1845-1851. DOI: 10.1007/s11605-009-0974-8.
48.Jang M, Park HW, Huh J, et al. Predictive value of sarcopenia and visceral obesity for postoperative pancreatic fistula after pancreaticoduodenectomy analyzed on clinically acquired CT and MRI[J]. Eur Radiol, 2019, 29(5): 2417-2425. DOI: 10.1007/s00330-018-5790-7.
49.Weng H, Fan QQ, Song XL, et al. Preoperative pancreatic CT value is related to pancreatic fistula after pancreaticoduodenectomy: a retrospective study[J]. Gland Surg, 2023, 12(2): 243-251. DOI: 10.21037/gs-23-19.
50.Collins GS, Reitama JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[J]. BMJ, 2015, 350: g7594. DOI: 10.1136/bmj.g7594.
51.黄光成, 周良, 石建伟, 等. 机器学习算法在疾病风险预测中的应用与比较[J]. 健康发展与政策研究, 2020, 23(4): 432-436. [Huang GC, Zhou L, Shi JW, et al. Application and comparison of machine learning algorithms in disease risk prediction[J]. Health Development and Policy Research, 2020, 23(4): 432-436.] DOI: 10.3969/j.issn.1007-953X.2020.04.024.