The Medical Information Mart for Intensive Care (MIMIC) database, which aggregates nearly two decades of medical records from the intensive care unit (ICU) at Beth Israel Deaconess Medical Center (BIDMC), encompasses multidimensional data and holds significant value for medical research, clinical decision-making, and healthcare management. This article systematically introduces the modular structure, data categories, data integration methods and explains the key data tables in the MIMIC-IV. The MIMIC database employs rigorous privacy protection and ethical review mechanisms to ensure patient data anonymization and compliance with research use, effectively safeguarding patient privacy while supporting scientific research. In the future, the application value of the MIMIC database can be enhanced through methods such as multi-center data integration, the incorporation of artificial intelligence (AI) technology, and cross-domain data fusion.
1.Lee J, Scott DJ, Villarroel M, et al. Open-access MIMIC-II database for intensive care research[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2011, 2011: 8315-8318. DOI: 10.1109/IEMBS.2011.6092050.
2.Johnson AE, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database[J]. Sci Data, 2016, 3: 160035. DOI: 10.1038/sdata.2016.35.
3.Johnson AEW, Bulgarelli L, Shen L, et al. MIMIC-IV, a freely accessible electronic health record dataset[J]. Sci Data, 2023, 10(1): 1. DOI: 10.1038/s41597-022-01899-x.
4.任文森. 入住重症监护室肝硬化患者住院死亡列线图预测模型构建与验证[D]. 泸州: 西南医科大学, 2024. [Ren WS. Development and validation of a nomogram for predicting in-hospitalmortality of intensive care unit patients with liver cirrhosis[D]. Luzhou: Southwest Medical University, 2024.] DOI: 10.27215/d.cnki.glzyu.2024.000134.
5.宋伟伦, 田国祥, 柳青青, 等. MIMIC数据库申请、导入、结构关系及查询[J]. 中国循证心血管医学杂志, 2018, 10(10): 1157-1161. [Song WL. Tian GX, Liu QQ, et al. Introduction of CHNS official website and data collection methods[J]. Chinese Journal of Evidence-Bases Cardiovascular Medicine, 2018, 10(10): 1157-1161.] DOI: 10.3969/j.issn.1674-4055.2018.10.02.
6.McLennan S, Shaw D, Celi LA. The challenge of local consent requirements for global critical care databases[J]. Intensive Care Med, 2019, 45(2): 246-248. DOI: 10.1007/s00134-018-5257-y.
7.Lin Z, Wang HF, Yu LY, et al. The relationship between biological aging and psoriasis: evidence from three observational studies[J]. Immun Ageing, 2025, 22(1): 6. DOI: 10.1186/s12979-025-00500-4.
8.Li W, Zhou H, Zou Y. An interpretable machine learning model for predicting mortality risk in adult ICU patients with acute respiratory distress syndrome[J]. Front Med (Lausanne), 2025, 12: 1580345. DOI: 10.3389/fmed.2025.1580345.
9.Rogers B. Unraveling temporal patterns of diagnostic markers and comorbidities in Alzheimer's disease: Insights from large-scale data[J]. Alzheimers Dement, 2025, 21(3): e14564. DOI: 10.1002/alz.14564.
10.Wang H, Zhang M, Mai L, et al. An effective multi-step feature selection framework for clinical outcome prediction using electronic medical records[J]. BMC Med Inform Decis Mak, 2025, 25(1): 84. DOI: 10.1186/s12911-025-02922-y.
11.Dan J, Lu HM, Zhou X, et al. Association of autoimmune diseases with the occurrence of osteoarthritis: a gene expression and Mendelian randomization study[J]. Front Med (Lausanne), 2024, 11: 1435312. DOI: 10.3389/fmed.2024.1435312.
12.Agliata A, Giordano D, Bardozzo F, et al. Machine learning as a support for the diagnosis of type 2 diabetes[J]. Int J Mol Sci, 2023, 24(7): 6775. DOI: 10.3390/ijms24076775.
13.Elseddeq NG, Elghamrawy SM, Eldesouky AI, et al. Optimized robust learning framework based on big data for forecasting cardiovascular crises[J]. Sci Rep, 2024, 14(1): 28224. DOI: 10.1038/s41598-024-76569-6.
14.Hennebelle A, Ismail L, Materwala H, et al. Secure and privacy-preserving automated machine learning operations into end-to-end integrated IoT-edge-artificial intelligence-blockchain monitoring system for diabetes mellitus prediction[J]. Comput Struct Biotechnol J, 2023, 23: 212-233. DOI: 10.1016/j.csbj.2023. 11.038.