Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 38,2025 No.9 Detail

Analysis of the changing trends of musculoskeletal disease burden in China from 1990 to 2021 and the prediction of the development trends

Published on Sep. 28, 2025Total Views: 43 times Total Downloads: 18 times Download Mobile

Author: HUANG Yuli 1, 2 CHEN Long 1 TANG Lifeng 1 WU Yanlin 1 WU Wenjuan 2 WANG Maoyuan 2, 3

Affiliation: 1. School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China 2. Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China 3. Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou 341000, Jiangxi Province, China

Keywords: Musculoskeletal disease China Disease burden Global Burden of Disease Study database Disability-adjusted life years ARIMA prediction model

DOI: 10.12173/j.issn.1004-4337.202502096

Reference: Huang YL, Chen L, Tang LF, Wu YL, Wu WJ, Wang MY. Analysis of the changing trends of musculoskeletal disease burden in China from 1990 to 2021 and the prediction of the development trends[J]. Journal of Mathematical Medicine, 2025, 38(9): 642-654. DOI: 10.12173/j.issn.1004-4337.202502096[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To analyze the changing trends of musculoskeletal disease burden in China from 1990 to 2021, predict the development trend of musculoskeletal disease burden from 2022 to 2036, and provide a basis for formulating the prevention and treatment strategies of musculoskeletal disease.

Methods  Data on the burden of musculoskeletal disease in China from 1990 to 2021, including prevalence, incidence, mortality and disability-adjusted life years (DALYs), were collected from the Global Burden of Disease Study (GBD) 2021 database. These indicators were used to describe the changing trend of musculoskeletal disease burden in China over the past 30 years. Joinpoint regression model was used to calculate the average annual percent change (AAPC) of age-standardized incidence rate and age-standardized DALYs rate of musculoskeletal disease. Age-period-cohort (APC) model was used to estimate the age, period, and cohort effects of the incidence and prevalence risks of musculoskeletal disease. The autoregressive integrated moving average model (ARIMA) was used to predict the age-standardized incidence rate and age-standardized DALYs rate of musculoskeletal disease from 2022 to 2036.

Results  From 1990 to 2021, the number of patients with musculoskeletal disease in China increased from 170.594 4 million [95% uncertain interval (UI): 159.481 1 million-182.116 3 million] to 342.123 8 million (95%UI: 322.5419 million-361.025 9 million), incident cases rose from 42.000 8 million (95%UI: 37.804  1 million-46.495 4 million) to 68.647 0 million (95%UI: 61.976 5 million-74.990 2 million), and DALYs grew from 16.629 5 million person-years (95%UI: 12.164 7 million person-years-22.138 1 million person-years) to 30.419 4 million person-years (95%UI: 21.752 7 million person-years-41.618 8 million person-years). The disease burden of musculoskeletal disease increased with age, and the disease burden indicators for women were higher than those for men in the same period. The Joinpoint regression model results showed that the age-standardized incidence rate of musculoskeletal disease decreased from 4 039.14/100 000 (3 648.56/100 000-4  437.89/100 000) to 3 629.61/100 000 (3 307.36/100 000-3 954.47/100 000) from 1990 to 2021, with an AAPC of -0.34%; the age-standardized DALYs rate decreased from 1 615.73/100 000 (1 169.69/100 000-2 151.25/100 000) to 1 578.37/100  000 (1 140.06/100 000-2 129.43/100 000), with an AAPC of -0.06%. The APC model results showed that the longitudinal age curves of the incidence and prevalence rates of musculoskeletal disease both showed significant upward trends; with the passage of time, the incidence and prevalence risks both showed downward trends. The cohort results showed that the incidence and prevalence risks of later-born cohorts were lower than those of earlier-born cohorts. The ARIMA model prediction results showed that by 2036, the age-standardized incidence rate of musculoskeletal disease will increase to 3 158.08/100 000 for men and 4 180.89/100 000 for women. The age-standardized DALYs rate among men will increase to 1 439.41/100 000, and among women, it can reach 1 822.06/100 000.

Conclusion  The aggravation of population aging will continue to increase the disease burden of musculoskeletal disease in China, which will bring increasing pressure to the public health system of China. It is necessary to formulate personalized prevention and treatment strategies for musculoskeletal disease for different genders and age groups.

Full-text
Please download the PDF version to read the full text: download
References

1.Perruccio AV, Yip C, Badley EM, et al. Musculoskeletal disorders: a neglected group at public health and epidemiology meetings?[J]. Am J Public Health, 2017, 107(10): 1584-1585. DOI: 10.2105/AJPH.2017.303990.

2.GBD 2013 DALYs and HALE Collaborators, Murray CJ, Barber RM, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition[J]. Lancet, 2015, 386(10009): 2145-2191. DOI: 10.1016/S0140-6736(15)61340-X.

3.GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159): 1859-1922. DOI: 10.1016/S0140-6736(18)32335-3.

4.Safiri S, Kolahi AA, Cross M, et al. Prevalence, deaths, and disability-adjusted life years due to musculoskeletal disorders for 195 countries and territories 1990-2017[J]. Arthritis Rheumatol, 2021, 73(4): 702-714. DOI: 10.1002/art.41571.

5.Tyrovolas S, Moneta V, Giné Vázquez I, et al. Mental disorders, musculoskeletal disorders and income-driven patterns: evidence from the Global Burden of Disease Study 2017[J]. J Clin Med, 2020, 9(7): 2189. DOI: 10.3390/jcm9072189.

6.Briggs AM, Cross MJ, Hoy DG, et al. Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 World Health Organization world report on ageing and health[J]. Gerontologist, 2016, 56 Suppl 2: S243-S255. DOI: 10.1093/geront/gnw002.

7.Yang F, Di N, Guo WW, et al. The prevalence and risk factors of work related musculoskeletal disorders among electronics manufacturing workers: a cross-sectional analytical study in China[J]. BMC Public Health, 2023, 23(1): 10. DOI: 10.1186/s12889-022-14952-6.

8.Liang J, Jia N, Zhang F, et al. Shoulder work-related musculoskeletal disorders and related factors of workers in 15 industries of China: a cross-sectional study[J]. BMC Musculoskelet Disord, 2022, 23(1): 952. DOI: 10.1186/s12891-022-05917-2.

9.健康中国行动推进委员会. 健康中国行动(2019—2030年):总体要求、重大行动及主要指标[J]. 中国循环杂志, 2019, 34(9): 846-858. [Healthy China Initiative Promotion Committee. Healthy China Initiative (2019-2030): general requirements, key actions, and major indicators[J]. Chinese Circulation Journal, 2019, 34(9): 846-858.] DOI: 10.3969/j.issn.1000-3614.2019.09.003.

10.Petersen B, Steyl T, Phillips J. 'Pain free if I ever will be': lived experience of workers seeking care for pain attributed to musculoskeletal disorders[J]. BMC Musculoskelet Disord, 2024, 25(1): 779. DOI: 10.1186/s12891-024-07879-z.

11.Chen N, Fong DYT, Wong JYH. Health and economic outcomes associated with musculoskeletal disorders attributable to high body mass index in 192 countries and territories in 2019[J]. JAMA Netw Open, 2023, 6(1): e2250674. DOI: 10.1001/jamanetworkopen.2022.50674.

12.Chen N, Fong DYT, Wong JYH. Trends in musculoskeletal rehabilitation needs in China from 1990 to 2030: a Bayesian age-period-cohort modeling study[J]. Front Public Health, 2022, 10: 869239. DOI: 10.3389/fpubh.2022.869239.

13.Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204): 1145-1158. DOI: 10.1016/S0140-6736(19)30427-1.

14.Lewis R, Gómez Álvarez CB, Rayman M, et al. Strategies for optimising musculoskeletal health in the 21st century[J]. BMC Musculoskelet Disord, 2019, 20(1): 164. DOI: 10.1186/s12891-019-2510-7.

15.GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440): 2133-2161. DOI: 10.1016/S0140-6736(24)00757-8.

16.GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440): 2100-2132. DOI: 10.1016/S0140-6736(24)00367-2.

17.GBD 2021 Other Musculoskeletal Disorders Collaborators. Global, regional, and national burden of other musculoskeletal disorders, 1990-2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021[J]. Lancet Rheumatol, 2023, 5(11): e670-e682. DOI: 10.1016/S2665-9913(23)00232-1.

18.Wu D, Wong P, Guo C, et al. Pattern and trend of five major musculoskeletal disorders in China from 1990 to 2017: findings from the Global Burden of Disease Study 2017[J]. BMC Med, 2021, 19(1): 34. DOI: 10.1186/s12916-021-01905-w.

19.Woolf AD, Akesson K. Understanding the burden of musculoskeletal conditions. The burden is huge and not reflected in national health prioritie[J]. BMJ, 2001, 322(7294): 1079-1080. DOI: 10.1136/bmj.322.7294.1079.

20.曾四清, 李艳, 刘珺, 等. 两组序列数据趋势变化特征对比分析的Joinpoint回归模型方法及应用[J]. 中国卫生统计, 2021, 38(2): 307-311. [Zeng SQ, Li Y, Liu J, et al. Joinpoint regression model method and application for comparative analysis of trend change characteristics of two groups of sequence data[J]. Chinese Journal of Health Statistics, 2021, 38(2): 307-311.] DOI: 10.3969/j.issn.1002-3674.2021.02.039.

21.刘雪薇, 王媛, 韦丹梅, 等. 1990—2019年中国女性乳腺癌发病及死亡趋势的年龄-时期-队列模型分析[J]. 中国全科医学, 2023, 26(1): 34-41. [Liu XW, Wang Y, Wei DM, et al. Age-period-cohort analysis of trends in breast cancer incidence and mortality among Chinese females from 1990 to 2019[J]. Chinese General Practice, 2023, 26(1): 34-41.] DOI: 10.12114/j.issn.1007-9572.2022.0619.

22.王淑霞, 李明阳, 刘希波, 等. ARIMA模型在全国艾滋病新发现病例数预测中的可行性研究[J]. 中国艾滋病性病, 2020, 26(7): 705-708. [Wang SX, Li MY, Liu XB, et al. Study of ARIMA model in predicting the incidence of AIDS in China[J]. Chinese Journal of AIDS & STD, 2020, 26(7): 705-708.] DOI: 10.13419/j.cnki.aids.2020.07.08.

23.Shevelkova V, Mattocks C, Lafortune L. Efforts to address the sustainable development goals in older populations: a scoping review[J]. BMC Public Health, 2023, 23(1): 456. DOI: 10.1186/s12889-023-15308-4.

24.Araujo de Carvalho I, Epping-Jordan J, Pot AM, et al. Organizing integrated health-care services to meet older people's needs[J]. Bull World Health Organ, 2017, 95(11): 756-763. DOI: 10.2471/BLT.16.187617.

25.Briggs AM, Woolf AD, Dreinhöfer K, et al. Reducing the global burden of musculoskeletal conditions[J]. Bull World Health Organ, 2018, 96(5): 366-368. DOI: 10.2471/BLT.17.204891.

26.Tian T, Zhu L, Fu Q, et al. Needs for rehabilitation in China: estimates based on the Global Burden of Disease Study 1990-2019[J]. Chin Med J (Engl), 2025, 138(1): 49-59. DOI: 10.1097/CM9.0000000000003245.

27.Lin I, Wiles LK, Waller R, et al. Poor overall quality of clinical practice guidelines for musculoskeletal pain: a systematic review[J]. Br J Sports Med, 2018, 52(5): 337-343. DOI: 10.1136/bjsports-2017-098375.

28.Lin I, Wiles L, Waller R, et al. What does best practice care for musculoskeletal pain look like? Eleven consistent recommendations from high-quality clinical practice guidelines: systematic review[J]. Br J Sports Med, 2020, 54(2): 79-86. DOI: 10.1136/bjsports-2018-099878.

29.Cao F, Li DP, Wu GC, et al. Global, regional and national temporal trends in prevalence for musculoskeletal disorders in women of childbearing age, 1990-2019: an age-period-cohort analysis based on the Global Burden of Disease Study 2019[J]. Ann Rheum Dis, 2024, 83(1): 121-132. DOI: 10.1136/ard-2023-224530.

30.王耀国, 韩婷, 唐诗诗, 等. 基于GBD的中国老年人群疾病负担分析与趋势研究[J]. 公共卫生与预防医学, 2024, 35(6): 1-5. [Wang YG, Han T, Tang SS, et al. Trend research on disease burden among the elderly in China based on GBD big data[J]. Journal of Public Health and Preventive Medicine, 2024, 35(6): 1-5.] DOI: 10.3969/j.issn.1006-2483.2024.06.001.

31.Rahmati M, Nalesso G, Mobasheri A, et al. Aging and osteoarthritis: central role of the extracellular matrix[J]. Ageing Res Rev, 2017, 40: 20-30. DOI: 10.1016/j.arr.2017.07.004.

32.Khandelwal S, Lane NE. Osteoporosis: review of etiology, mechanisms, and approach to management in the aging population[J]. Endocrinol Metab Clin North Am, 2023, 52(2): 259-275. DOI: 10.1016/j.ecl.2022.10.009.

33.Cai Y, Han Z, Cheng H, et al. The impact of ageing mechanisms on musculoskeletal system diseases in the elderly[J]. Front Immunol, 2024, 15: 1405621. DOI: 10.3389/fimmu.2024.1405621.

34.Collins BC, Laakkonen EK, Lowe DA. Aging of the musculoskeletal system: how the loss of estrogen impacts muscle strength[J]. Bone, 2019, 123: 137-144. DOI: 10.1016/j.bone.2019.03.033.

35.Enns DL, Tiidus PM. The influence of estrogen on skeletal muscle: sex matters[J]. Sports Med, 2010, 40(1): 41-58. DOI: 10.2165/11319760-000000000-00000.

36.Sperstad JB, Tennfjord MK, Hilde G, et al. Diastasis recti abdominis during pregnancy and 12 months after childbirth: prevalence, risk factors and report of lumbopelvic pain[J]. Br J Sports Med, 2016, 50(17): 1092-1096. DOI: 10.1136/bjsports-2016-096065.

37.Hsieh PL, Lee YC, Yang SY, et al. Association between work content and musculoskeletal disorders among home caregivers: a cross-section study[J]. Ind Health, 2022, 60(6): 514-524. DOI: 10.2486/indhealth.2021-0160.

38.Aguilar-Palacio I, Obón-Azuara B, Castel-Feced S, et al. Gender health care inequalities in health crisis: when uncertainty can lead to inequality[J]. Arch Public Health, 2024, 82(1): 46. DOI: 10.1186/s13690-024-01276-7.

39.van Mulligen E, Rutten-van Mölken M, van der Helm-van Mil A. Early identification of rheumatoid arthritis: does it induce treatment-related cost savings?[J]. Ann Rheum Dis, 2024, 83(12): 1647-1656. DOI: 10.1136/ard-2024-225746.

40.Lewis R, Gómez Álvarez CB, Rayman M, et al. Strategies for optimising musculoskeletal health in the 21st century[J]. BMC Musculoskelet Disord, 2019, 20(1): 164. DOI: 10.1186/s12891-019-2510-7.

41.Verbunt JA, Sieben J, Vlaeyen JW, et al. A new episode of low back pain: who relies on bed rest?[J]. Eur J Pain, 2008, 12(4): 508-516. DOI: 10.1016/j.ejpain.2007.08.001.

42.Gatchel RJ. Musculoskeletal disorders: primary and secondary interventions[J]. J Electromyogr Kinesiol, 2004, 14(1): 161-170. DOI: 10.1016/j.jelekin.2003.09.007.

43.Chen N, Fong DYT, Wong JYH. The global health and economic impact of low-back pain attributable to occupational ergonomic factors in the working-age population by age, sex, geography in 2019[J]. Scand J Work Environ Health, 2023, 49(7): 487-495. DOI: 10.5271/sjweh.4116.

44.Hartvigsen J, Hancock MJ, Kongsted A, et al. What low back pain is and why we need to pay attention[J]. Lancet, 2018, 391(10137): 2356-2367. DOI: 10.1016/S0140-6736(18)30480-X.

45.Fatoye F, Gebrye T, Ryan CG, et al. Global and regional estimates of clinical and economic burden of low back pain in high-income countries: a systematic review and meta-analysis[J]. Front Public Health, 2023, 11: 1098100. DOI: 10.3389/fpubh.2023.1098100.

Popular papers
Last 6 months