Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 38,2025 No.12 Detail

Exploring the molecular mechanisms of green tea polyphenols against pancreatic adenocarcinoma based on network topology, Bulk transcriptomics and spatial transcriptomics

Published on Dec. 31, 2025Total Views: 48 times Total Downloads: 7 times Download Mobile

Author: YANG Yang 1 YANG Jie 2 GUO Baoliang 3 JI Xianhui 1 DAI Ziyun 1 ZHANG Zhirui 4 DU Juan 5

Affiliation: 1. College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730101, China 2. First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730000, China 3. School of Clinical Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730101, China 4. First School of Clinical Medicine, Hubei University of Medicine, Shiyan 442000, Hubei Province, China 5. School of Nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China

Keywords: Green tea polyphenols Pancreatic adenocarcinoma Network topology Bulk transcriptomics Spatial transcriptomics Immune microenvironment

DOI: 10.12173/j.issn.1004-4337.202505054

Reference: Yang Y, Yang J, Guo BL, Ji XH, Dai ZY, Zhang ZR, Du J. Exploring the molecular mechanisms of green tea polyphenols against pancreatic adenocarcinoma based on network topology, Bulk transcriptomics and spatial transcriptomics[J]. Journal of Mathematical Medicine, 2025, 38(12): 923-935. DOI: 10.12173/j.issn.1004-4337.202505054[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the molecular mechanisms of green tea polyphenols against pancreatic adenocarcinoma (PAAD) based on network topology, Bulk transcriptomics and spatial transcriptomics.

Methods  Network topology was used to analyze the potential targets of green tea polyphenols against PAAD. The enrichment pathways of target genes and the tumor immune microenvironment were evaluated based on the BEST platform and the GSCA database. The spatial mechanism of target genes was explored through the SpatialTME database.

Results  Green tea polyphenols can intervene in the pathogenesis and progression of PAAD through multiple pathways and targets. The high expression of target genes showed a significant positive correlation with the receptor tyrosine kinase (RTK) signaling pathway. Target genes expression was significantly negatively correlated with the abundance of neutrophils, T helper 2 cells (Th2) and naive CD4-positive T lymphocytes (CD4_naive) (P<0.05), while showing a significant positive correlation with the abundance of mucosal-associated invariant T cells (MAIT), CD4-positive T lymphocytes (CD4_T) and type  1 regulatory T cells (Tr1), etc (P<0.05). The target genes could significantly distinguish responders and non-responders in immunotherapy cohorts receiving anti-programmed cell death protein 1 (PD-1) and anti-PD-1/programmed death-ligand 1 (PD-1/PD-L1) treatments.

Conclusion  This study revealed the tissue localization mechanism of green tea polyphenols' intervention in PAAD. The target genes are expected to serve as tumor markers for PAAD, which is of great significance for its clinical diagnosis and treatment.

Full-text
Please download the PDF version to read the full text: download
References

1.Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.

2.易丽夏, 方涵露, 李婧怡, 等. 2022年全球和中国胰腺癌发病及死亡分析[J]. 海军军医大学学报, 2024, 45(12): 1470-1477. [Yi LX, Fang HL, Li JY, et al. Incidence and mortality of pancreatic cancer in the world and China in 2022[J]. Academic Journal of Naval Medical University, 2024, 45(12): 1470-1477.] DOI: 10.16781/j.CN31-2187/R.20240630.

3.Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, et al. Pancreatic cancer: advances and challenges[J]. Cell, 2023, 186(8): 1729-1754. DOI: 10.1016/j.cell.2023.02.014.

4.Del Chiaro M, Sugawara T, Karam SD, et al. Advances in the management of pancreatic cancer[J]. BMJ, 2023, 383: e073995. DOI: 10.1136/bmj-2022-073995.

5.郭献铸, 王馨慧, 常雪婷, 等. 中药治疗胰腺癌的基础和临床研究进展[J]. 实用肿瘤杂志, 2024, 39(6): 573-579. [Guo XZ, Wang XH, Chang XT, et al. Advances in basic and clinical research on traditional Chinese medicine for pancreatic cancer[J]. Journal of Practical Oncology, 2024, 39(6): 573-579.] DOI: 10.13267/j.cnki.syzlzz.2024.085.

6.朱小东, 成远, 李伟. 2023年ASCO肝胆胰恶性肿瘤治疗进展[J]. 实用肿瘤杂志, 2023, 38(4): 324-331. [Zhu XD, Cheng Y, Li W. Advances in treatment of hepatobiliary and pancreatic malignancies: highlights from 2023 ASCO annual meeting[J]. Journal of Practical Oncology, 2023, 38(4): 324-331.] DOI: 10.13267/j.cnki.syzlzz.2023.052.

7.Wood LD, Canto MI, Jaffee EM, et al. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment[J]. Gastroenterology, 2022, 163(2): 386-402.e1. DOI: 10.1053/j.gastro.2022.03.056.

8.Hu ZI, O'Reilly EM. Therapeutic developments in pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol, 2024, 21(1): 7-24. DOI: 10.1038/s41575-023-00840-w.

9.Khan N, Mukhtar H. Cancer and metastasis: prevention and treatment by green tea[J]. Cancer Metastasis Rev, 2010, 29(3): 435-445. DOI: 10.1007/s10555-010-9236-1.

10.Miyake T, Yasukawa K, Inouye K. Analysis of the mechanism of inhibition of human matrix metalloproteinase 7 (MMP-7) activity by green tea catechins[J]. Biosci Biotechnol Biochem, 2011, 75(8): 1564-1569. DOI: 10.1271/bbb.110257.

11.Chen Z, Zhu QY, Tsang D, et al. Degradation of green tea catechins in tea drinks[J]. J Agric Food Chem, 2001, 49(1): 477-482. DOI: 10.1021/jf000877h.

12.Dou QP. Tea in health and disease[J]. Nutrients, 2019, 11(4): 929. DOI: 10.3390/nu11040929.

13.Ohishi T, Miyoshi N, Mori M, et al. Health effects of soy isoflavones and green tea catechins on cancer and cardiovascular diseases based on urinary biomarker levels[J]. Molecules, 2022, 27(24): 8899. DOI: 10.3390/molecules27248899.

14.James A, Wang K, Wang Y. Therapeutic activity of green tea epigallocatechin-3-gallate on metabolic diseases and non-alcoholic fatty liver diseases: the current updates[J]. Nutrients, 2023, 15(13): 3022. DOI: 10.3390/nu15133022.

15.Luo Q, Luo L, Zhao J, et al. Biological potential and mechanisms of tea's bioactive compounds: an updated review[J]. J Adv Res, 2024, 65: 345-363. DOI: 10.1016/j.jare.2023.12.004.

16.Dekant W, Fujii K, Shibata E, et al. Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements[J]. Toxicol Lett, 2017, 277: 104-108. DOI: 10.1016/j.toxlet.2017.06.008.

17.Kolling GJ, Stivanin SCB, Gabbi AM, et al. Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives[J]. J Dairy Sci, 2018, 101(5): 4221-4234. DOI: 10.3168/jds.2017-13841.

18.Zhou J, Tang L, Shen CL, et al. Green tea polyphenols modify gut-microbiota dependent metabolisms of energy, bile constituents and micronutrients in female Sprague-Dawley rats[J]. J Nutr Biochem, 2018, 61: 68-81. DOI: 10.1016/j.jnutbio.2018.07.018.

19.Wishart DS, Guo A, Oler E, et al. HMDB 5.0: the Human Metabolome Database for 2022[J]. Nucleic Acids Res, 2022, 50(D1): D622-D631. DOI: 10.1093/nar/gkab1062.

20.Kanehisa M, Furumichi M, Sato Y, et al. KEGG for taxonomy-based analysis of pathways and genomes[J]. Nucleic Acids Res, 2023, 51(D1): D587-D592. DOI: 10.1093/nar/gkac963.

21.Sayers EW, Bolton EE, Brister JR, et al. Database resources of the national center for biotechnology information[J]. Nucleic Acids Res, 2022, 50(D1): D20-D26. DOI: 10.1093/nar/gkab1112.

22.Little JL, Williams AJ, Pshenichnov A, et al. Identification of "known unknowns" utilizing accurate mass data and ChemSpider[J]. J Am Soc Mass Spectrom, 2012, 23(1): 179-185. DOI: 10.1007/s13361-011-0265-y.

23.Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry[J]. Nat Biotechnol. 2007, 25(2): 197-206. DOI: 10.1038/nbt1284.

24.Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33. DOI: 10.1002/cpbi.5.

25.Lin F, Zhang G, Yang X, et al. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway[J]. J Ethnopharmacol, 2023, 303: 115933. DOI: 10.1016/j.jep.2022.115933.

26.Lu S, Sun X, Zhou Z, et al. Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation[J]. Front Immunol, 2023, 14: 1235575. DOI: 10.3389/fimmu.2023.1235575.

27.Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612. DOI: 10.1093/nar/gkaa1074.

28.Liu Z, Liu L, Weng S, et al. BEST: a web application for comprehensive biomarker exploration on large-scale data in solid tumors[J]. J Big Data, 2023, 10: 165. https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00844-y

29.Liu CJ, Hu FF, Xie GY, et al. GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels[J]. Brief Bioinform, 2023, 24(1): bbac558. DOI: 10.1093/bib/bbac558.

30.Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge[J]. Contemp Oncol (Pozn), 2015, 19(1A): A68-A77. DOI: 10.5114/wo.2014.47136.

31.Shi J, Wei X, Xun Z, et al. The web-based portal SpatialTME integrates histological images with single-cell and spatial transcriptomics to explore the tumor microenvironment[J]. Cancer Res, 2024, 84(8): 1210-1220. DOI: 10.1158/0008-5472.CAN-23-2650.

32.Zhang S, Yun D, Yang H, et al. Roflumilast inhibits tumor growth and migration in STK11/LKB1 deficient pancreatic cancer[J]. Cell Death Discov, 2024, 10(1): 124. DOI: 10.1038/s41420-024-01890-y.

33.马丁, 林大伟, 杨卫平, 等. 以EP300为中心的胰腺癌相关蛋白质相互作用网络特征分析[J]. 外科理论与实践, 2015, 20(5): 429-433. [Ma D, Lin DW, Yang WP, et al. Analysis of protein interaction networks related to core protein EP300 of pancreatic cancer[J]. Journal of Surgery Concepts & Practice, 2015, 20(5): 429-433.] DOI: 10.16139/j.1007-9610.2015.05.015.

34.Huang H, Wang S, Xia H, et al. Lactate enhances NMNAT1 lactylation to sustain nuclear NAD+ salvage pathway and promote survival of pancreatic adenocarcinoma cells under glucose-deprived conditions[J]. Cancer Lett, 2024, 588: 216806. DOI: 10.1016/j.canlet.2024.216806.

35.Liao CY, Li G, Kang FP, et al. Necroptosis enhances 'don't eat me' signal and induces macrophage extracellular traps to promote pancreatic cancer liver metastasis[J]. Nat Commun, 2024, 15(1): 6043. DOI: 10.1038/s41467-024-50450-6.

36.Campa D, Rizzato C, Stolzenberg-Solomon R, et al. TERT gene harbors multiple variants associated with pancreatic cancer susceptibility[J]. Int J Cancer, 2015, 137(9): 2175-2183. DOI: 10.1002/ijc.29590.

37.Xiao W, Chen X, Li X, et al. RBM10 regulates human TERT gene splicing and inhibits pancreatic cancer progression[J]. Am J Cancer Res, 2021, 11(1): 157-170. https://pubmed.ncbi.nlm.nih.gov/33520366/

38.Ramsey ML, Heald B, Gokun Y, et al. Germline multigene panel testing in acute and chronic pancreatitis[J]. PLoS One, 2024, 19(8): e0307076. DOI: 10.1371/journal.pone.0307076.

39.Marx SJ. Hyperplasia in glands with hormone excess[J]. Endocr Relat Cancer, 2016, 23(1): R1-R14. DOI: 10.1530/ERC-15-0171.

40.Mazzaschi G, Leonetti A, Minari R, et al. Modulating tumor microenvironment: a review on STK11 immune properties and predictive vs prognostic role for non-small-cell lung cancer immunotherapy[J]. Curr Treat Options Oncol, 2021, 22(11): 96. DOI: 10.1007/s11864-021-00891-8.

41.Koyama S, Akbay EA, Li YY, et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment[J]. Cancer Res, 2016, 76(5): 999-1008. DOI: 10.1158/0008-5472.CAN-15-1439.

42.Salinas-Muñoz L, Campos-Fernández R, Mercader E, et al. Estrogen receptor-alpha (ESR1) governs the lower female reproductive tract vulnerability to Candida albicans[J]. Front Immunol, 2018, 9: 1033. DOI: 10.3389/fimmu.2018.01033.

43.Silva PM, da Silva IV, Sarmento MJ, et al. Aquaporin-3 and aquaporin-5 facilitate migration and cell-cell adhesion in pancreatic cancer by modulating cell biomechanical properties[J]. Cells, 2022, 11(8): 1308. DOI: 10.3390/cells11081308.

44.Wang Y, Su J, Zhou P, et al. Glucocorticoids promote lung metastasis of pancreatic cancer cells through enhancing cell adhesion, migration and invasion[J]. Endocr J, 2023, 70(7): 731-743. DOI: 10.1507/endocrj.EJ21-0787.

45.Kosinski J, Sechi A, Hain J, et al. ITIH5 as a multifaceted player in pancreatic cancer suppression, impairing tyrosine kinase signaling, cell adhesion and migration[J]. Mol Oncol, 2024, 18(6): 1486-1509. DOI: 10.1002/1878-0261.13609.

46.Li ZD, Liu F, Zeng Y, et al. EGCG suppresses PD-1 expression of T cells via inhibiting NF-κB phosphorylation and nuclear translocation[J]. Int Immunopharmacol, 2024, 133: 112069. DOI: 10.1016/j.intimp.2024.112069.

47.Zhang X, Cui X, Li P, et al. EGC enhances tumor antigen presentation and CD8+ T cell-mediated antitumor immunity via targeting oncoprotein SND1[J]. Cancer Lett, 2024, 592: 216934. DOI: 10.1016/j.canlet.2024.216934.

48.Guo Y, Liang J, Liu B, et al. Molecular mechanism of food-derived polyphenols on PD-L1 dimerization: a molecular dynamics simulation study[J]. Int J Mol Sci, 2021, 22(20): 10924. DOI: 10.3390/ijms222010924.

Popular papers
Last 6 months