Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.3 Detail

Advances of PIG3 promoter binding element (TGYCC)n and tumor susceptibility

Published on Mar. 27, 2024Total Views: 830 times Total Downloads: 544 times Download Mobile

Author: CHEN Fengxia 1 PU Feifei 2

Affiliation: 1. Department of Cancer Radiotherapy and Chemotherapy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 2. Department of Orthopedics, Wuhan No.1 Hospital, Wuhan 430022, China

Keywords: PIG3 (TGYCC)n p53 PHB1/PHB2 Transcriptional regulation Polymorphism

DOI: 10.12173/j.issn.1004-4337.202401007

Reference: Chen FX, Pu FF. Advances of PIG3 promoter binding element (TGYCC)n and tumor susceptibility[J]. Journal of Mathematical Medicine, 2024, 37(3): 217-221. DOI: 10.12173/j.issn.1004-4337.202401007[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

PIG3 is a downstream target gene regulated by p53 and is involved in the process of apoptosis by participating in the synthesis of reactive oxygen species and the regulation of oxidative stress. There is a tandem repeats sequence (TGYCC) n (Y=C or T) in PIG3 promoter, whose transcriptional regulation is closely associated with the pentanucleotide repeats. In this article, the role of (TGYCC) n tandem repeats sequence in the transcriptional regulation of PIG3 was reviewed, and the relationship between its polymorphisms and tumor susceptibility was discussed.

Full-text
Please download the PDF version to read the full text: download
References

1.Kotsinas A, Aggarwal V, Tan EJ, et al. PIG3: a novel link between oxidative stress and DNA damage response in cancer[J]. Cancer Lett, 2012, 327(1-2): 97-102. DOI: 10.1016/j.canlet.2011.12.009.

2.Lee JH, Kang Y, Khare V, et al. The p53-inducible gene 3 (PIG3) contributes to early cellular response to DNA damage[J]. Oncogene, 2010, 29(10): 1431-1450. DOI: 10.1038/onc.2009.438.

3.Guan X, Liu Z, Wang L, et al. Identification of prohibitin and prohibiton as novel factors binding to the p53 induced gene 3 (PIG3) promoter (TGYCC) (15) motif[J]. Biochem Biophys Res Commun, 2014, 443(4): 1239-1244. DOI: 10.1016/j.bbrc.2013.12.124.

4.Guan X, Liu Z, Wang L, et al. Functional repeats (TGYCC) n in the p53-inducible gene 3 (PIG3) promoter and susceptibility to squamous cell carcinoma of the head and neck[J]. Carcinogenesis, 2013, 34(4): 812-817. DOI: 10.1093/carcin/bgs388.

5.Herraiz C, Calvo F, Pandya P, et al. Reactivation of p53 by a cytoskeletal sensor to control the balance between DNA damage and tumor dissemination[J]. J Natl Cancer Inst, 2015, 108(1): djv289. DOI: 10.1093/jnci/djv289.

6.Castellini L, Moon EJ, Razorenova OV, et al. KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage[J]. Nucleic Acids Res, 2017, 45(7): 3674-3692. DOI: 10.1093/nar/gkw1281.

7.Zhang W, Luo J, Chen F, et al. BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner[J]. Oncotarget, 2015, 6(10): 7608-7618. DOI: 10.18632/oncotarget.3263.

8.Qi A, Lamont L, Liu E, et al. Essential protein PHB2 and its regulatory mechanisms in cancer[J]. Cells, 2023, 12(8): 1211. DOI: 10.3390/cells12081211.

9.An B, Zhang Y, Yan B, et al. RNA interference of PHB1 enhances virulence of Vip3Aa to Sf9 cells and Spodoptera frugiperda larvae[J]. Pest Manag Sci, 2023, 79(8): 2934-2943. DOI: 10.1002/ps.7469.

10.Mishra S. Phb1: Phb2 heterodimers in the mitochondria-beyond functional interdependence[J]. J Biol Chem, 2019, 294(40): 14836. DOI: 10.1074/jbc.L119.010788.

11.Pecce V, Verrienti A, Abballe L, et al. Loss of function SETD2 mutations in poorly differentiated metastases from two hürthle cell carcinomas of the thyroid[J]. Cancers(Basel), 2020, 12(7): 1892. DOI: 10.3390/cancers12071892.

12.Werner H. BRCA1: An endocrine and metabolic regulator[J]. Front Endocrinol (Lausanne), 2022, 13: 844575. DOI: 10.3389/fendo.2022.844575.

13.Calheiros J, Corbo V, Saraiva L. Overcoming therapeutic resistance in pancreatic cancer: emerging opportunities by targeting BRCAs and p53[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(4): 188914. DOI: 10.1016/j.bbcan.2023.188914.

14.Kim J, Jeong K, Jun H, et al. Mutations of TP53 and genes related to homologous recombination repair in breast cancer with germline BRCA1/2 mutations[J]. Hum Genomics, 2023, 17(1): 2. DOI: 10.1186/s40246-022-00447-3.

15.Tanaka T, Ohkubo S, Tatsuno I, et al. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes[J]. Cell, 2007, 130(4): 638-650. DOI: 10.1016/j.cell.2007.08.001.

16.Ito M, Nishiyama H, Watanabe J, et al. Association of the PIG3 promoter polymorphism with invasive bladder cancer in a Japanese population[J]. Jpn J Clin Oncol, 2006, 36(2): 116-120. DOI: 10.1093/jjco/hyi225.

17.Gorgoulis VG, Liloglou T, Sigala F, et al. Absence of association with cancer risk and low frequency of alterations at a p53 responsive PIG3 gene polymorphism in breast and lung carcinomas[J]. Mutat Res, 2004, 556(1-2): 143-150. DOI: 10.1016/j.mrfmmm.2004.07.008.

18.Park SJ, Kim HB, Kim J, et al. The oncogenic effects of p53-inducible gene 3 (PIG3) in colon cancer cells[J]. Korean J Physiol Pharmacol, 2017, 21(2): 267-273. DOI: 10.4196/kjpp.2017.21.2.267.

19.Chen G, Xu JY, Chen J, et al. Loss of PIG3 increases HIF-1α level by promoting protein synthesis via mTOR pathway in renal cell carcinoma cells[J]. Oncotarget, 2016, 7(19): 27176-27184. DOI: 10.18632/oncotarget.8401.

20.Wang H, Luo K, Tan LZ, et al. p53-induced gene 3 mediates cell death induced by glutathione peroxidase 3[J]. J Biol Chem, 2012, 287(20): 16890-16902. DOI: 10.1074/jbc.M111.322636.

21.Feng J, Qiu S, Zhou S, et al. mTOR: a potential new target in nonalcoholic fatty liver disease[J]. Int J Mol Sci, 2022, 23(16): 9196. DOI: 10.3390/ijms23169196.

22.Nirgude S, Choudhary B. Insights into the role of GPX3, a highly efficient plasma antioxidant, in cancer[J]. Biochem Pharmacol, 2021, 184: 114365. DOI: 10.1016/j.bcp.2020.114365.

23.Zhou H, Tang L, Shang Z, et al. PIG3 downregulation enhances the radio sensitivity of NSCLC cells by promoting G2/M cell cycle arrest and apoptosis[J]. Radiat Med Prot, 2023, 4(1): 19-25. DOI: 10.1016/j.radmp.2022.10.003.

24.Chaudhry SR, Lopes J, Levin NK, et al. Germline mutations in apoptosis pathway genes in ovarian cancer; the functional role of a TP53I3 (PIG3) variant in ROS production and DNA repair[J]. Cell Death Discov, 2021, 7(1): 62. DOI: 10.1038/s41420-021-00442-y.

25.Sito H, Tan SC. Genetic polymorphisms as potential pharmacogenetic biomarkers for platinum-based chemotherapy in non-small cell lung cancer[J]. Mol Biol Rep, 2024, 51(1): 102. DOI: 10.1007/s11033-023-08915-2.

Popular papers
Last 6 months