Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.9 Detail

Construction of a prognostic nomogram for lung adenocarcinoma patients based on immune scores

Published on Sep. 29, 2024Total Views: 1575 times Total Downloads: 283 times Download Mobile

Author: YAO Wei 1 WANG Pingfei 2

Affiliation: 1. College of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China 2. Department of Respiratory and Critical Care Medicine, Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China

Keywords: Lung adenocarcinoma Immune scores Nomogram Prognosis

DOI: 10.12173/j.issn.1004-4337.202406051

Reference: Yao W, Wang PF. Construction of a prognostic nomogram for lung adenocarcinoma patients based on immune scores[J]. Journal of Mathematical Medicine, 2024, 37(9): 649-656. DOI: 10.12173/j.issn.1004-4337.202406051[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the relationship between immune scores and prognosis, and establish a clinical nomogram to predict the survival of patients with lung adenocarcinoma.

Methods  The clinicopathological features and immune scores of 337 patients with lung adenocarcinoma were obtained from The Cancer Genome Atlas (TCGA) database. Multivariate COX proportional hazards regression model was used to analyze the independent predictors of overall survival in patients with lung adenocarcinoma. Based on the results of the multivariate analysis, a nomogram was established. The consistency index (C-index) and calibration curve were used to measure the prediction accuracy and discrimination ability.

Results The patients were divided into three subgroups according to the immune scores. Compared with patients with low immune scores, patients with high immune scores had significantly better overall survival (HR=0.56, 95%CI: 0.34-0.91, P=0.018). Additionally, the TNM stage of the tumor was also an important factor affecting survival. The C-index for predicting overall survival was 0.71(95%CI: 0.665-0.755). Calibration curves for the probability of overall survival at 1, 3, and 5 years demonstrated significant concordance between nomogram-predicted and observed values.

Conclusion  High immune score was significantly associated with better overall survival in patients with lung adenocarcinoma, and the TNM stage of the tumor also significantly influenced the overall survival. In addition, the nomogram developed for predicting prognosis may be helpful in estimating the survival of patient with lung adenocarcinoma.

Full-text
Please download the PDF version to read the full text: download
References

1.Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.

2.Testa U, Castelli G, Pelosi E. Lung cancers: molecular characterization, clonal heterogeneity and evolution, and cancer stem cells[J]. Cancers (Basel), 2018, 10(8): 248. DOI: 10.3390/cancers10080248.

3.Cao M, Li H, Sun D, et al. Cancer burden of major cancers in China: a need for sustainable actions[J]. Cancer Communications (Lond), 2020, 40(5): 205-210. DOI: 10.1002/cac2.12025.

4.Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018[J]. Eur J Cancer, 2018, 103: 356-387. DOI: 10.1016/j.ejca.2018.07.005.

5.Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments[J]. Lancet, 2017, 389(10066): 299-311. DOI: 10.1016/S0140-6736(16)30958-8.

6.Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial[J]. Lancet, 2016, 387(10030): 1837-1846. DOI: 10.1016/S0140-6736(16)00587-0.

7.Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer[J]. N Engl J Med, 2015, 372(21): 2018-2028. DOI: 10.1056/NEJMoa1501824.

8.Blumenschein GR, Smit EF, Planchard D, et al. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)[J]. Ann Oncol, 2015, 26(5): 894-901. DOI: 10.1093/annonc/mdv072.

9.Jänne PA, Shaw AT, Pereira JR, et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study[J]. Lancet Oncol, 2013, 14(1): 38-47. DOI: 10.1016/S1470-2045(12)70489-8.

10.Gradishar WJ, Anderson BO, Balassanian R, et al. NCCN guidelines insights breast cancer, version 1.2016[J]. J Natl Compr Canc Netw, 2015, 13(12): 1475-1485. DOI: 10.6004/jnccn.2015.0176.

11.Clarke E. Immunotherapy for breast cancer: is it feasible?[J]. Immunotherapy, 2015, 7(11): 1135-1143. DOI: 10.2217/imt.15.83.

12.Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses[J]. Science, 2004, 305(5681): 200-205. DOI: 10.1126/science.1100369.

13.Prabhakaran S, Rizk VT, Ma Z, et al. Evaluation of invasive breast cancer samples using a 12-chemokine gene expression score: correlation with clinical outcomes[J]. Breast Cancer Res, 2017, 19(1): 71. DOI: 10.1186/s13058-017-0864-z.

14.Kemi N, Eskuri M, Herva A, et al. Tumour-stroma ratio and prognosis in gastric adenocarcinoma[J], Br J Cancer, 2018, 119(4): 435-439. DOI: 10.1038/s41416-018-0202-y.

15.Pagès F, Galon J, Dieu-Nosjean MC, et al. Immune infiltration in human tumors: a prognostic factor that should not be ignored[J]. Oncogene, 2010, 29(8): 1093-1102. DOI: 10.1038/ONC.2009.416.

16.Domingues P, González-Tablas M, Otero Á, et al. Tumor infiltrating immune cells in gliomas and meningiomas[J]. Brain Behav Immu, 2016, 53: 1-15. DOI: 10.1016/j.bbi.2015.07.019.

17.Ali HR, Chlon L, Pharoah PDP, et al. Patterns of immune infiltration in breast cancer and their clinical implications: a gene-expression-based retrospective study[J]. PLoS Med, 2016, 13(12): e1002194. DOI: 10.1371/journal.pmed.1002194.

18.Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data[J]. Nat Commun, 2013, 4: 2612. DOI: 10.1038/ncomms3612.

19.Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer analysis project[J]. Nat Genet, 2013, 45(10): 1113-1120. DOI: 10.1038/ng.2764.

20.Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[J]. Sci Signal, 2013, 6(269): pl1. DOI: 10.1126/scisignal.2004088.

21.Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization[J]. Clin Cancer Res, 2004, 10(21): 7252-7259. DOI: 10.1158/1078-0432.CCR-04-0713.

22.Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis[M]. New York: Springer, 2001.

23.Sugiyama E, Togashi Y, Takeuchi Y, et al. Blockade of EGFR improves responsiveness to PD-1 blockade in EGFR-mutated non-small cell lung cancer[J]. Sci Immunol, 2020, 5(43): eaav3937. DOI: 10.1126/sciimmunol.aav3937.

24.Anagnostou V, Niknafs N, Marrone K, et al. Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer[J]. Nat Cancer, 2020, 1(1): 99-111. DOI: 10.1038/s43018-019-0008-8.

25.Yu Y, Zeng D, Ou Q, et al. Association of survival and immune-related biomarkers with immunotherapy in patients with non-small cell lung cancer: a Meta-analysis and individual patient-level analysis[J]. JAMA Netw Open, 2019, 2(7): e196879. DOI: 10.1001/jamanetworkopen.2019.6879.

26.Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230): 124-128. DOI: 10.1126/science.aaa1348.

27.Dai F, Liu L, Che G, et al. The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer[J]. BMC Cancer, 2010, 10: 220. DOI: 10.1186/1471-2407-10-220.

28.Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541(7637): 321-330. DOI: 10.1038/nature21349.

29.Yan X, Jiao SC. Roles of tumor-infiltrating lymphocytes in non-small cell lung cancer recurrence and metastasis: a Meta-analysis[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2015, 37(4): 406-414. DOI: 10.3881/j.issn.1000-503X.2015.04.007.

30.何萍, 顾霞, 关玉宝, 等. 同时性多中心原发性肺癌37例临床病理分析[J]. 中华肿瘤防治杂志, 2013, 20(5): 357-360. [He P, Gu X, Guan YB, et al. Clinicopathologic analysis of 37 cases of synchronous multiple primary lung cancer[J]. Chinese Journal of Cancer Prevention and Treatment, 2013, 20(5): 357-360.] DOI: 10.16073/j.cnki.cjcpt.2013.05.013.

31.Li N, Ying J, Tao X, et al. P1.18-06 efficacy and safety of neoadjuvant PD-1 blockade with sintilimab in resectable non-small cell lung cancer[J]. Journal of Thoracic Oncology, 2019, 14(10): S627-S628. DOI: 10.1016/j.jtho.2019.08.1322.

32.Herbst RS, Garon EB, Kim DW, et al. LBA63 long-term survival in patients (pts) with advanced NSCLC in the KEYNOTE-010 study overall and in pts who completed two years of pembrolizumab (pembro)[J]. Annals of Oncology, 2018, 29(suppl_8): viii749. DOI: 10.1093/annonc/mdy424.075.

33.Forde PM, Chaft JE, Smith KN, et al. Neoadjuvant PD-1 blockade in resectable lung cancer[J]. N Engl J Med, 2018, 378(21): 1976-1986. DOI: 10.1056/nejmoa1716078.

34.Forde PM, Brahmer JR, Kelly RJ. New strategies in lung cancer: epigenetic therapy for non-small cell lung cancer[J]. Clin Cancer Res, 2014, 20(9): 2244-2248. DOI: 10.1158/1078-0432.CCR-13-2088.

35.Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials[J]. J Clin Oncol, 2013, 31(8): 992-1001. DOI: 10.1200/JCO.2012.46.9270.

Popular papers
Last 6 months