Objective To analyze the causal relationship between immune cells and gastroesophageal reflux disease (GERD) by bidirectional Mendelian randomization (MR) method.
Methods The genome-wide association study (GWAS) database was used for data mining. The positive MR exposure factor was 731 immune cell features, and the outcome factor was GERD. The reverse MR exposure factor was GERD, and the outcome factor was meaningful immune cell features in the positive MR results to rule out the interference of reverse causality. Five methods, including inverse variance weighted (IVW), were used for MR analysis. And the heterogeneity test, horizontal pleiotropy analysis and sensitivity analysis were also performed.
Results There were three immune cell features that were causally related to GERD, namely IgD-CD27-%B cell[OR=0.960, 95%CI(0.940, 0.981), P<0.001], FSC-A on NK[OR=0.955, 95%CI (0.932, 0.979), P<0.001], and EM CD4+%CD4+[OR=1.056, 95%CI(1.025, 1.087), P<0.001].
Conclusion In this study, bidirectional MR analysis was used to reduce reverse causality, and the causal relationship between three immunophenotypes and GERD was revealed genetically, which provides a new perspective for the study of the immune mechanism of GERD, and provides a theoretical basis for the early diagnosis and immunotherapy of the disease.
1.Chen J, Brady P. Gastroesophageal reflux disease: pathophysiology, diagnosis, and treatment[J]. Gastroenterol Nurs, 2019, 42(1): 20-28. DOI: 10.1097/SGA.0000000000000359.
2.Richter JE, Rubenstein JH. Presentation and epidemiology of gastroesophageal reflux disease[J]. Gastroenterology, 2018, 154(2): 267-276. DOI: 10.1053/j.gastro.2017.07.045.
3.Katzka DA, Kahrilas PJ. Advances in the diagnosis and management of gastroesophageal reflux disease[J]. BMJ, 2020, 371: m3786. DOI: 10.1136/bmj.m3786.
4.Eusebi LH, Ratnakumaran R, Yuan Y, et al. Global prevalence of, and risk factors for, gastro-oesophageal reflux symptoms: a meta-analysis[J]. Gut, 2018, 67(3): 430-440. DOI: 10.1136/gutjnl-2016-313589.
5.Ness-Jensen E, Hveem K, El-Serag H, et al. Lifestyle intervention in gastroesophageal reflux disease[J]. Clin Gastroenterol Hepatol, 2016, 14(2): 175-182. DOI: 10.1016/j.cgh.2015.04.176.
6.Yuan LZ, Yi P, Wang GS, et al. Lifestyle intervention for gastroesophageal reflux disease: a national multicenter survey of lifestyle factor effects on gastroesophageal reflux disease in China[J]. Therap Adv Gastroenterol, 2019, 12: 1756284819877788. DOI: 10.1177/1756284819877788.
7.Böhmer AC, Schumacher J. Insights into the genetics of gastroesophageal reflux disease (GERD) and GERD-related disorders[J]. Neurogastroenterol Motil, 2017, 29(2): e13017. DOI: 10.1111/nmo.13017.
8.Ustaoglu A, Daudali FA, D'afflitto M, et al. Identification of novel immune cell signature in gastroesophageal reflux disease: altered mucosal mast cells and dendritic cell profile[J]. Front Immunol, 2023, 14: 1282577. DOI: 10.3389/fimmu.2023.1282577.
9.Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review[J]. Res Synth Methods, 2019, 10(4): 486-496. DOI: 10.1002/jrsm.1346.
10.Zheng J, Baird D, Borges MC, et al. Recent developments in Mendelian randomization studies[J]. Curr Epidemiol Rep, 2017, 4(4): 330-345. DOI: 10.1007/s40471-017-0128-6.
11.Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J]. Nat Genet, 2020, 52(10): 1036-1045. DOI: 10.1038/s41588-020-0684-4.
12.Ong JS, An J, Han X, et al. Multitrait genetic association analysis identifies 50 new risk loci for gastro-oesophageal reflux, seven new loci for Barrett's oesophagus and provides insights into clinical heterogeneity in reflux diagnosis[J]. Gut, 2022, 71(6):1053-1061. DOI: 10.1136/gutjnl-2020-323906.
13.Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies[J]. Int J Epidemiol, 2011, 40(3): 755-764. DOI: 10.1093/ije/dyr036.
14.Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations[J]. Bioinformatics, 2019, 35(22): 4851-4853. DOI: 10.1093/bioinformatics/btz469.
15.Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genet Epidemiol, 2016, 40(4): 304-314. DOI: 10.1002/gepi.21965.
16.Slob EAW, Groenen PJF, Thurik AR, et al. A note on the use of Egger regression in Mendelian randomization studies[J]. Int J Epidemiol, 2017, 46(6): 2094-2097. DOI: 10.1093/ije/dyx191.
17.Hemani G, Zheng J, Elsworth B, et al. The MR-base platform supports systematic causal inference across the human phenome[J]. Elife, 2018, 7: e34408. DOI: 10.7554/eLife.34408.
18.Didelez V, Meng S, Sheehan NA. Assumptions of IV methods for observational epidemiology[J]. Statistical Science, 2010, 25(1): 22-40. DOI: 10.1214/09-STS316.
19.Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525. DOI: 10.1093/ije/dyv080.
20.Verbanck M, Chen CY, Neale B, et al. Publisher correction: detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(8): 1196. DOI: 10.1038/s41588-018-0164-2.
21.Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption[J]. Int J Epidemiol, 2017, 46(6): 1985-1998. DOI: 10.1093/ije/dyx102.
22.Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-698. DOI: 10.1038/s41588-018-0099-7.
23.Wu F, Huang Y, Hu J, et al. Mendelian randomization study of inflammatory bowel disease and bone mineral density[J]. BMC Med, 2020, 18(1): 312. DOI: 10.1186/s12916-020-01778-5.
24.Gronau QF, Wagenmakers EJ. Limitations of Bayesian leave-one-out cross-validation for model selection[J]. Comput Brain Behav, 2019, 2(1): 1-11. DOI: 10.1007/s42113-018-0011-7.
25.Speiser DE, Chijioke O, Schaeuble K, et al. CD4+ T cells in cancer[J]. Nat Cancer, 2023, 4(3): 317-329. DOI: 10.1038/s43018-023-00521-2.
26.Muller K, Xiao J, Putra J, et al. Lymphocytic esophagitis with predominance of CD4 T cells and expansion of Th1 cells is associated with achalasia[J]. Am J Clin Pathol, 2021, 156(2): 278-287. DOI: 10.1093/ajcp/aqaa239.
27.Jäger A, Kuchroo VK. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation[J]. Scand J Immunol, 2010, 72(3): 173-184. DOI: 10.1111/j.1365-3083.2010.02432.x.
28.Gruden E, Kienzl M, Ristic D, et al. Mononuclear cell composition and activation in blood and mucosal tissue of eosinophilic esophagitis[J]. Front Immunol, 2024, 15: 1347259. DOI: 10.3389/fimmu.2024.1347259.
29.Tang X, Deng B, Zang A, et al. Characterization of age-related immune features after autologous NK cell infusion: protocol for an open-label and randomized controlled trial[J]. Front Immunol, 2022, 13: 940577. DOI: 10.3389/fimmu.2022.940577.
30.Ahmed Osman H, Aly SS, Mahmoud HS, et al. Effect of acid suppression on peripheral T-lymphocyte subsets and immunohistochemical esophageal mucosal changes in patients with gastroesophageal reflux disease[J]. J Clin Gastroenterol, 2019, 53(9): e362-e370. DOI: 10.1097/MCG.0000000000001098.
31.Aybar LT, McGregor JG, Hogan SL, et al. Reduced CD5(+) CD24(hi) CD38(hi) and interleukin-10(+) regulatory B cells in active anti-neutrophil cytoplasmic autoantibody-associated vasculitis permit increased circulating autoantibodies[J]. Clin Exp Immunol, 2015, 180(2): 178-188. DOI: 10.1111/cei.12483.
32.Kyaw T, Tipping P, Bobik A, et al. Protective role of natural IgM-producing B1a cells in atherosclerosis[J]. Trends Cardiovasc Med, 2012, 22(2): 48-53. DOI: 10.1016/j.tcm.2012.06.011.