Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.11 Detail

Research progress on the NF-κB signaling pathway in mycoplasma pneumoniae infection in children

Published on Nov. 29, 2024Total Views: 892 times Total Downloads: 175 times Download Mobile

Author: LI Shuqiong 1 LI Yunxiang 1 MA Yaxin 1 WANG Jianjun 2

Affiliation: 1. First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730000, China 2. Department of Pediatrics, Gansu Provincial Hospital, Lanzhou 730000, China

Keywords: Children Mycoplasma pneumoniae pneumonia NF-κB signaling pathway Inflammatory response Therapeutic strategies

DOI: 10.12173/j.issn.1004-4337.202409058

Reference: Li SQ, Li YX, Ma YX, et al. Research progress on the NF-κB signaling pathway in mycoplasma pneumoniae infection in children[J]. Journal of Mathematical Medicine, 2024, 37(11): 873-879. DOI: 10.12173/j.issn.1004-4337.202409058[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Mycoplasma pneumoniae pneumonia (MPP) is a common form of community-acquired pneumonia that mainly affects children. The clinical symptoms of MPP include fever and cough, and many complications may occur in severe cases. The nuclear factor-kappa B (NF-κB) signaling pathway plays a crucial role in regulating inflammatory responses and immune responses. This article explored the impact of mycoplasma pneumoniae infection on the NF-κB signaling pathway, analyzed its dual roles in cell survival, apoptosis, and immune evasion mechanisms, and discussed the regulatory mechanisms of both classical and non-classical NF-κB pathways. Studies have shown that mycoplasma pneumoniae can promote the release of inflammatory cytokines and further aggravate the inflammatory response by activating the Toll-like receptor 2-nuclear factor-kappa B (TLR2-NF-κB) signaling pathway. Based on this mechanism, the article proposed potential therapeutic strategies, including the application of traditional Chinese medicine components and modern pharmaceuticals, and emphasized the significance of NF-κB as a therapeutic target, which provided a theoretical basis for understanding the pathological mechanisms of MPP and developing novel therapeutic approaches.

Full-text
Please download the PDF version to read the full text: download
References

1.中华人民共和国国家卫生健康委员会. 儿童肺炎支原体肺炎诊疗指南(2023年版)[J]. 中国合理用药探索, 2023, 20(3): 16-24. [National Health Commission of the People's Republic of China. Guidelines for diagnosis and treatment of mycoplasma pneumonae pneumonia in children (2023 edition)[J]. Chinese Journal of Rational Drug Use, 20(3): 16-24.] DOI: 10.3969/j.issn.2096-3327. 2023.03.003.

2.Song Z, Jia G, Luo G, et al. Global research trends of Mycoplasma pneumoniae pneumonia in children: a bibliometric analysis[J]. Front Pediatr, 2023, 11: 1306234. DOI: 10.3389/fped.2023.1306234.

3.Ma C, Hao X, Gao L, et al. Extracellular vesicles released from macrophages infected with Mycoplasma pneumoniae stimulate proinflammatory response via the TLR2-NF-κB/JNK signaling pathway[J]. Int J Mol Sci, 2023, 24(10): 8588. DOI: 10.3390/ijms24108588.

4.Nakane D, Kenri T, Matsuo L, et al. Systematic structural analyses of attachment organelle in Mycoplasma pneumoniae[J]. PLoS Pathog, 2015, 11(12): e1005299. DOI: 10.1371/journal.ppat.1005299.

5.Chen YH, Wu KH, Wu HP. Unraveling the complexities of Toll-like receptors: from molecular mechanisms to clinical applications[J]. Int J Mol Sci, 2024, 25(9): 5037. DOI: 10.3390/ijms25095037.

6.Luo H, He J, Qin L, et al. Mycoplasma pneumoniae lipids license TLR-4 for activation of NLRP3 inflammasome and autophagy to evoke a proinflammatory response[J]. Clin Exp Immunol, 2021, 203(1): 66-79. DOI: 10.1111/cei.13510.

7.Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5(1): 209. DOI: 10.1038/s41392-020-00312-6.

8.Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age[J]. Nat Rev Immunol, 2018, 18(5): 309-324. DOI: 10.1038/nri.2017.142.

9.Li C, Moro S, Shostak K, et al. Molecular mechanism of IKK catalytic dimer docking to NF-κB substrates[J]. Nat Commun, 2024, 15(1): 7692. DOI: 10.1038/s41467-024-52076-0.

10.Kircheis R, Planz O. Special issue "the role of Toll-like receptors (TLRs) in infection and inflammation 2.0"[J]. Int J Mol Sci, 2024, 25(17): 9709. DOI: 10.3390/ijms25179709.

11.Dabbah-Krancher G, Ruchinskas A, Kallarakal MA, et al. A20 intrinsically influences human effector T-cell survival and function by regulating both NF-κB and JNK signaling[J]. Eur J Immunol, 2024, 2: e2451245. DOI: 10.1002/eji.202451245.

12.Wang Z, Zhang S, Xiao Y, et al. NLRP3 inflammasome and inflammatory diseases[J]. Oxid Med Cell Longev, 2020, 2020: 4063562. DOI: 10.1155/2020/4063562.

13.Dadkhah M, Sharifi M. The NLRP3 inflammasome: mechanisms of activation, regulation, and role in diseases[J]. Int Rev Immunol, 2024, 14: 1-14. DOI: 10.1080/08830185.2024.2415688.

14.Yang L, Zhang C, Liu Y, et al. The therapeutic potential of neutrophil extracellular traps and NLRP3 inflammasomes in Mycoplasma pneumoniae pneumonia[J]. Immunol Invest, 2024, 53(6): 975-988. DOI: 10.1080/08820139. 2024.2364796.

15.Sun SC. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9): 545-558. DOI: 10.1038/nri.2017.52.

16.Li Y, Yang JY, Xie X, et al. Preventing abnormal NF-κB activation and autoimmunity by Otub1-mediated p100 stabilization[J]. Cell Res, 2019, 29(6): 474-485. DOI: 10.1038/s41422-019-0174-3.

17.Hu H, Brittain GC, Chang JH, et al. OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3[J]. Nature, 2013, 494(7437): 371-374. DOI: 10.1038/nature11831.

18.Jane-wit D, Surovtseva YV, Qin L, et al. Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+ NIK+ signalosome on Rab5+ endosomes[J]. Proc Natl Acad Sci USA, 2015, 112(31): 9686-9691. DOI: 10.1073/pnas.1503535112.

19.Sautès-Fridman C, Petitprez F, Calderaro J, et al. Tertiary lymphoid structures in the era of cancer immunotherapy[J]. Nat Rev Cancer, 2019, 19(6): 307-325. DOI: 10.1038/s41568-019-0144-6.

20.Zhang H, Zhang D, Li H, et al. Biphasic activation of nuclear factor-κB and expression of p65 and c-Rel following traumatic neuronal injury[J]. Int J Mol Med, 2018, 41(6): 3203-3210. DOI: 10.3892/ijmm.2018.3567.

21.Hwang KA, Hwang YJ, Song J. Aster yomena extract ameliorates pro-inflammatory immune response by suppressing NF-κB activation in RAW 264.7 cells[J]. J Chin Med Assoc, 2018, 81(2): 102-110. DOI: 10.1016/j.jcma.2017.06.017.

22.Manli W, Hua Q. Effect of miR-506-3p on proliferation and apoptosis of airway smooth muscle cells in asthmatic mice by regulating CCL2 gene expression and mediating TLR4/NF-κB signaling pathway activation[J]. Mol Biotechnol, 2021, 63(5): 410-423. DOI: 10.1007/s12033-021-00309-8.

23.Li R, Wang J, Li R, et al. ATP/P2X7-NLRP3 axis of dendritic cells participates in the regulation of airway inflammation and hyper-responsiveness in asthma by mediating HMGB1 expression and secretion[J]. Exp Cell Res, 2018, 366(1): 1-15. DOI: 10.1016/j.yexcr.2018.03.002.

24.Sakai H, Suto W, Kai Y, et al. Mechanisms underlying the pathogenesis of hyper-contractility of bronchial smooth muscle in allergic asthma[J]. J Smooth Muscle Res, 2017, 53(0): 37-47. DOI: 10.1540/jsmr.53.37.

25.Wertz IE, Dixit VM. Signaling to NF-kappaB: regulation by ubiquitination[J]. Cold Spring Harb Perspect Biol, 2010, 2(3): a003350. DOI: 10.1101/cshperspect.a003350.

26.Fatima I, Sahar A, Tariq A, et al. Exploring the role of licorice and its derivatives in cell signaling pathway NF-κB and MAPK[J]. J Nutr Metab, 2024, 2024: 9988167. DOI: 10.1155/2024/9988167.

27.Fu YS, Duan XQ, Cheng KR, et al. Geraniol relieves mycoplasma pneumonia infection-induced lung injury in mice through the regulation of ERK/JNK and NF-κB signaling pathways[J]. J Biochem Mol Toxicol, 2022, 36(4): e22984. DOI: 10.1002/jbt.22984.

28.Ding N, Lei A, Shi Z, et al. Total flavonoids from camellia oleifera alleviated Mycoplasma pneumoniae-induced lung injury via inhibition of the TLR2-Mediated NF-κB and MAPK pathways[J]. Molecules, 2023, 28(20): 7077. DOI: 10.3390/molecules28207077.

29.Liu F, Zhao YH, Lu JM, et al. Hyperoside inhibits proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae[J]. Mol Cell Biochem, 2019, 453(1-2): 179-186. DOI: 10.1007/s11010-018-3443-4.

30.Lang Y, Chu F, Liu L, et al. Potential role of BAY11-7082, a NF-κB blocker inhibiting experimental autoimmune encephalomyelitis in C57BL/6J mice via declining NLRP3 inflammasomes[J]. Clin Exp Immunol, 2022, 207(3): 378-386. DOI: 10.1093/cei/uxab022.

31.Gao Y, Zhou A, Chen K, et al. A living neutrophil Biorobot synergistically blocks multifaceted inflammatory pathways in macrophages to effectively neutralize cytokine storm[J]. Chem Sci, 2024, 15(6): 2243-2256. DOI: 10.1039/d3sc03438k.

32.Liu N, Li G, Guan Y, et al. N-acetylcysteine alleviates pulmonary alveolar proteinosis induced by indium-tin oxide nanoparticles in male rats: involvement of the NF-κB signaling pathway[J]. Ecotoxicol Environ Saf, 2022, 241: 113812. DOI: 10.1016/j.ecoenv.2022.113812.

33.Xu S, Xing J, Zheng L, et al. Azithromycin regulates Mettl3-mediated NF-κB pathway to enhance M2 polarization of RAW264.7 macrophages and attenuate LPS-triggered cytotoxicity of MLE-12 alveolar cells[J]. Int Immunopharmacol, 2024, 137: 112426. DOI: 10.1016/j.intimp.2024.112426.

Popular papers
Last 6 months