Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 36,2023 No.9 Detail

Efficiency evaluation of swab pooling detection in disease screening in a large population

Published on Oct. 07, 2023Total Views: 1445 times Total Downloads: 499 times Download Mobile

Author: Si-Qing ZENG 1, 2

Affiliation: 1. Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China 2. Guangdong Provincial Institute of Public Health, Guangzhou 511430, China

Keywords: Swab pooling detection Swab pooling size Efficiency

DOI: 10.12173/j.issn.1004-4337.202306159

Reference: Zeng SQ. Efficiency evaluation of swab pooling detection in disease screening in a large population[J]. Journal of Mathematical Medicine, 2023, 36(9): 671-679. DOI: 10.12173/j.issn.1004-4337.202306159[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To evaluate the impact of swab pooling strategy on the work efficiency, determine the optimum swab pooling size, and provide scientific reference for improving the technical specification of swab pooling detection.

Methods  The principle of binomial distribution, group detection technology, and Python language programming were used to analyze the change rules of sampling workload, the detection workload, and the weighted comprehensive workload of swab pooling detection under different levels of population infection rates with different swab pooling sizes, and to analyze the application conditions and work efficiency of 5 in 1, 10 in 1, and 20 in 1 swab pooling detection.

Results  The higher the population infection rate is, the smaller the optimum swab pooling size is, and the larger the minimum weighted comprehensive workload growth rate (MWCWGR) is (the smaller the absolute value of the negative numbers is), which means that the improvement in work efficiency is less. The larger the weight ratio (K) of the unit workload of sampling to detection is, the larger the optimum swab pooling size is, and the smaller the MWCWGR is (the larger of the absolute value of the negative number is), indicating a greater improvement in work efficiency. When the population infection rate exceeds 6% and the K value is less than 1/2, MWCWGR is a positive number. In this case, the swab pooling detection will increase workload and reduce work efficiency, and should not be used. When the K values are 1/4, 1/3, 1/2, 1, 2, 3, and 4, the 5 in 1, 10 in 1, and 20 in 1 swab pooling detection are most suitable for populations with infection rates between 7‰ to 4%, 2‰ to 9‰, and 5/10 000 to 2‰, respectively. The corresponding MWCWGR ranges from -11.10% to -45.87%, -16.02% to -64.28%, and -18.00% to -72.08%, respectively. As the K value increases, the population infection rates suitable for 5 in 1, 10 in 1, and 20 in 1 swab pooling detection gradually increase, and the magnitude of the weighted comprehensive workload reduction gradually increases separately.

Conclusion  When using swab pooling detection technology, it is necessary to correctly select the optimum swab pooling size based on the population infection rate and the unit workload weight of sampling to detection, in order to maximize the work efficiency. When formulating the technical specification for the swab pooling detection, it is necessary to specify the application conditions for the optimum swab pooling size.

Full-text
Please download the PDF version to read the full text: download
References

1.王国强, 邓硕, 汪嘉懿, 等. 样本混合检测在COVID-19诊断中的应用研究[J]. 中华实验和临床病毒学杂志, 2020, 34(5): 459-461. [Wang GQ, Deng S, Wang JY, et al. Research on mixed sample detection in the diagnosis of COVID-19[J]. Chinese Journal of Experimental and Clinical Virology, 2020, 34(5): 459-461.] DOI: 10.3760/cma.j.cn112866-20200716-00207.

2.罗颖, 陈晓辉, 李维, 等. 用于新冠肺炎大规模筛查和监测的混合样本采集策略[J].中国国境卫生检疫杂志, 2022, 45(1): 34-36. [Luo Y, Chen XH, Li W, et al. Hybrid sample pooling strategy for large-scale COVID-19 screening and surveillance[J]. Chinese Journal of Frontier Health and Quarantine, 2022, 45(1): 34-36.] DOI: 10.16408/j.1004-9770.2022.01.010.

3.Lohse S, Pfuhl T, Berkó-Göttel B, et al. Pooling of samples for testing for SARS-CoV-2 in asymptomatic people[J]. Lancet Infect Dis, 2020, 20(11): 1231-1232. DOI: 10.1016/S1473-3099(20)30362-5.

4.de Salazar A, Aguilera A, Trastoy R, et al. Sample pooling for SARS-CoV-2 RT-PCR screening[J]. Clin Microbiol Infect, 2020, 26(12): 1687.e1-1687.e5. DOI: 10.1016/j.cmi.2020.09.008.

5.国务院应对新型冠状病毒肺炎疫情联防联控机制医疗救治组. 新冠病毒核酸筛查稀释混样检测技术指引[J]. 中国病毒病杂志, 2020, 10(5): 329, 332. [Medical Treatment Group of the Joint Prevention and Control Mechanism of the State Council in Response to the Novel Coronavirus Pneumonia. Technical guidelines for 2019-nCOV nucleic acid screening with diluted mixed samples[J]. Chinese Journal of Viral Diseases, 2020, 10(5): 329, 332.] DOI: 10.16505/j.2095-0136.2020.0061.

6.国务院应对新型冠状病毒肺炎疫情联防联控机制医疗救治组. 医疗机构新型冠状病毒核酸检测工作手册(试行第二版)[J]. 中国病毒病杂志, 2021, 11(3): 163-167. [Medical Treatment Group of the Joint Prevention and Control Mechanism of the State Council in Response to the Novel Coronavirus Pneumonia. Working manual of novel coronavirus nucleic acid detection for medical institutions (second trial edition)[J]. Chinese Journal of Viral Diseases, 2021, 11(3): 163-167.] DOI: 10.16505/j.2095-0136.2021.0019.

7.国务院应对新型冠状病毒肺炎疫情联防联控机制医疗救治组. 新冠病毒核酸10合1混采检测技术规范[J]. 中国病毒病杂志, 2020, 10(5): 330-332. [Medical Treatment Group of the Joint Prevention and Control Mechanism of the State Council in Response to the Novel Coronavirus Pneumonia. COVID-19 nucleic acid 10 in 1 mixed production test specification[J]. Chinese Journal of Viral Diseases, 2020, 10(5): 330-332.] DOI: 10.16505/j.2095-0136.2020.0070.

8.国务院应对新型冠状病毒肺炎疫情联防联控机制医疗救治组. 新冠病毒核酸20合1混采检测技术规范[J]. 中国病毒病杂志, 2022, 12(2): 106-107. [Medical Treatment Group of the Joint Prevention and Control Mechanism of the State Council in Response to the Novel Coronavirus Pneumonia. COVID-19 nucleic acid 20 in 1 mixed production test specification[J]. Chinese Journal of Viral Diseases, 2022, 12(2): 106-107.] DOI: 10.16505/j.2095-0136.2022.0025.

9.Abdalhamid B, Bilder CR, McCutchen EL, et al. Assessment of specimen pooling to conserve SARS CoV-2 testing resources[J]. Am J Clin Pathol, 2020, 153(6): 715-718. DOI: 10.1093/ajcp/aqaa064.

10.Alcoba-Florez J, Gil-Campesino H, García-Martínez de Artola D, et al. Increasing SARS-CoV-2 RT-qPCR testing capacity by sample pooling[J]. Int J Infect Dis, 2021, 103: 19-22. DOI: 10.1016/j.ijid.2020.11.155.

11.宋美兰, 任芙蓉, 龚晓燕, 等. 单检及16份混样检测模式对献血者核酸检测效果的比较研究[J]. 中华检验医学杂志, 2012, 35(1): 53-58. [Song ML, Ren FR, Gong XY, et al. Comparison the effect of individual donation NAT and minipool of 16 donations NAT[J]. Chinese Journal of Laboratory Medicine, 2012, 35(1): 53-58.] DOI: 10.3760/cma.j.issn.1009-9158.2012.01.013.

12.Rai B, Shukla A, Choudhary G, et al. Pool testing for COVID-19: suitable splitting procedure and pool size for India[J]. Disaster Med Public Health Prep, 2022, 16(3): 913-919. DOI: 10.1017/dmp.2020.335.

13.陈颖丹, 王聚君, 周长海, 等. 混合血清检测在寄生虫病血清流行病学调查中的应用[J].中华流行病学杂志, 2006, 27(11): 947-949. [Chen YD, Wang JJ, Zhou CH, et al. Study on the mixed testing of serum samples in seroepidemiological survey of parasitic diseases[J]. Chinese Journal of Epidemiology, 2006, 27(11): 947-949.] DOI: 10.3760/j.issn:0254-6450.2006.11.007.

14.Chen F, Geng Z, Wang J, et al. Comparing two sample pooling strategies for SARS-CoV-2 RNA detection for efficient screening of COVID-19[J]. J Med Virol, 2021, 93(5): 2805 -2809. DOI: 10.1002/jmv.26632.

15.Grobe N, Cherif A, Wang X, et al. Sample pooling: burden or solution?[J]. Clin Microbiol Infect, 2021, 27(9): 1212-1220. DOI: 10.1016/j.cmi.2021.04.007.

16.Brynildsrud O. COVID-19 prevalence estimation by random sampling in population–optimal sample pooling under varying assumptions about true prevalence[J]. BMC Med Res Methodol, 2020, 20(1): 196. DOI: 10.1186/s12874-020-01081-0.

17.Agarwal R, Gupta E, Dubey S, et al. Pooled nasopharyngeal swab collection in a single vial for the diagnosis of SARS CoV-2 infection: an effective cost saving method[J]. Indian J Med Microbiol, 2021, 39(2): 231-234. DOI: 10.1016/j.ijmmb.2020.11.002.

18.孙振球. 医学统计学(第3版)[M]. 北京: 人民卫生出版社, 2012. [Sun ZQ. Medical Statistics (3rd edition)[M]. Beijing: People's Health Publishing House, 2012.]

19.The SciPy community, 2008-2022. Statistical functions (scipy.stats)[EB/OL]. [2023-6-8]. Error! Hyperlink reference not valid.

20.The Matplotlib development team, 2012-2022. Matplotlib: Visualization with Python[EB/OL]. [2023-6-15]. https://matplotlib.org/.

21.Robert D. The detection of defective members of large populations[EB/OL]. [2023-8-8]. https://projecteuclid.org/euclid.aoms/1177731363.

22.何栩如, 孙喜琢, 宫芳芳, 等. 大规模人群新冠病毒核酸筛查成本效益分析[J]. 现代医院, 2021, 21(9): 1403-1406. [He XR, Sun XZ, Gong FF, et al. A cost-benefit analysis of the large-scale screening program for coronavirus disease-2019 (COVID-19) by nucleic acid test[J]. Modern Hospitals, 2021, 21(9): 1403-1406.] DOI: 10.3969/j.issn.1671-332X.2021.09.027.

23.Mishra B, Behera B, Mohanty M, et al. Challenges and issues of SARS-CoV-2 pool testing[J]. Lancet Infect Dis, 2020, 20(11): 1233. DOI: 10.1016/S1473-3099(20)30463-1.

Popular papers
Last 6 months