Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.10 Detail

Analysis of completed projects in medical immunology field of National Natural Science Foundation of China from 2018 to 2022

Published on Nov. 01, 2024Total Views: 671 times Total Downloads: 104 times Download Mobile

Author: AN Yingzan 1 ZHANG Hui 2 Tuerdi RYL 3 SHEN Minghui 4

Affiliation: 1. Department of Laboratory, The People's Hospital of Qin'an, Tianshui 741600, Gansu Province, China 2. Pathogenic Biology Laboratory, Gansu Provincial Center for Disease Control and Prevention, Lanzhou 730000, China 3. School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China 4. Center of Laboratory Medicine, The Second Hospital, Lanzhou University, Lanzhou 730030, China

Keywords: National Natural Science Foundation of China Medical immunology Completed project Research hotspots Visual analysis

DOI: 10.12173/j.issn.1004-4337.202407021

Reference: An YZ, Zhang H, Tuerdi RYL, Shen MH. Analysis of completed projects in medical immunology field of National Natural Science Foundation of China from 2018 to 2022[J]. Journal of Mathematical Medicine, 2024, 37(10): 734-745. DOI: 10.12173/j.issn.1004-4337.202407021. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To analyze the completed projects in medical immunology field of National Natural Science Foundation of China (NSFC) from 2018 to 2022, and explore the current development status and existing problems in this field, in order to provide reference for future project applications and optimization of funding direction.

Methods  The data for this analysis were sourced from the Science Fund Sharing Service Network, which provided information on project titles, categories, funding amounts, sub-discipline codes, host institutions, project keywords and research outcomes for completed medical immunology projects funded by NSFC from 2018 to 2022. Microsoft Excel 2021, CiteSpace 6.1.R6 and VOSviewer 1.6.18 softwares were used for visual analysis of the data.

Results  From 2018 to 2022, there were 1 206 completed projects of NSFC in the field of medical immunology, with funding of 601.545 million RMB from 30 provinces, municipalities and autonomous regions. Among them, 57.88% of the projects were distributed in Shanghai (191 items), Beijing (184 items), Jiangsu (136 items), Guangdong (127 items) and Shandong (60 items). The number of completed projects in southern region was 2.43 times higher than that in northern region. All the projects belonged to 160 supporting institutions, mainly concentrated in comprehensive universities, among which Shanghai Jiao Tong University ranked first with 64 projects. The research achievements were mainly reflected in three aspects: journal papers (7 481 articles), personnel training (1 748 people) and patents (269 authorized items). The subdisciplines focused on H1104 (inflammation, infection and immunity) and H1107 (autoimmune diseases), with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) being the hotspot diseases in the field, and macrophages being the hotspot cells.

Conclusion  Between 2018 and 2022, there were significant differences in the distribution of completed medical immunology projects of NSFC in terms of geography, host institutions, categories of research outcomes, and sub-disciplines. The research hotpots were mainly focused on immune regulation and autoimmune diseases.

Full-text
Please download the PDF version to read the full text: download
References

1.杨权, 邱怀娜, 黄俊. 医学免疫学教学改革的实践与探讨[J]. 基础医学教育, 2017, 19(1): 14-16. [Yang  Q, Qiu  HN, Huang J. Practice and discussion of teaching reform of medical immunology[J]. Basic Medical Education, 2017, 19(1): 14-16.] DOI: 10.13754/j.issn 2095-1450. 2017.01.05.

2.Rijkers GT, Damoiseaux JG, Hooijkaas H. Medical immunology: two-way bridge connecting bench and bedside[J]. Immunol Lett, 2014, 162(2 Pt B): 127-133. DOI: 10.1016/j.imlet.2014.10.016.

3.国家自然科学基金委员会. 2021年度国家自然科学基金项目指南[M]. 北京: 科学出版社, 2021.

4.国家自然科学基金委员会. 2022年度国家自然科学基金项目指南[M]. 北京: 科学出版社, 2022.

5.van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538. DOI: 10.1007/s11192-009-0146-3.

6.郑晓, 田峰, 陈一鸣, 等. 2002—2022年我国多重慢病领域研究热点及演进趋势分析[J]. 中国全科医学, 2023, 26(21): 2567-2573. [Zheng X, Tian F, Chen  YM, et al. Research hotspots and evolutionary trends on multimorbidity in China from 2002 to 2022[J]. Chinese General Practice, 2023, 26(21): 2567-2573.] DOI: 10.12114/j.issn.1007-9572.2023.0066.

7.陈淑珍. 医学免疫学科研式教学模式的探索与实践 [J]. 医学研究杂志, 2023, 52(7): 202-204. [Chen SZ. Exploration and practice of medical immunology scientific research teaching mode[J]. Journal of Medical Research, 2023, 52(7): 202-204.] DOI: 10.11969/j.issn.1673-548X. 2023.07.042.

8.Chang HY, Chu W, Li XD, et al. Analysis of the status and tendency of R&D input in the field of rare diseases funded by the National Natural Science Foundation of China[J]. Front Public Health, 2021, 9: 729162. DOI: 10.3389/fpubh.2021.729162.

9.何涛, 吴潇韩, 何倩, 等. 免疫学研究进展[J]. 世界最新医学信息文摘, 2018, 18(80): 124-127. [He T, Wu XH, He Q, et al. Research on animal immunology[J]. World Latest Medicine Information, 2018, 18(80): 124-127.] DOI: 10.19613/j.cnki.1671-3141.2018.80.054.

10.张东玥, 郑国光. 巨噬细胞的固有免疫记忆研究进展 [J]. 中国细胞生物学学报, 2022, 44(1): 120-128. [Zhang DY, Zheng GG. Research progress in innate immune memory of macrophages[J]. Chinese Journal of Cell Biology, 2022, 44(1): 120-128.] DOI: 10.11844/cjcb.2022. 01.0015.

11.Yao Y, Jeyanathan M, Haddadi S, et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity[J]. Cell, 2018, 175(6): 1634-1650. DOI: 10.1016/j.cell.2018.09.042.

12.Chan LC, Rossetti M, Miller LS, et al. Protective immunity in recurrent Staphylococcus aureus infection reflects localized immune signatures and macrophage-conferred memory[J]. Proc Natl Acad Sci USA, 2018, 115(47): E11111-E11119. DOI: 10.1073/pnas.1808353115.

13.Nigrovic PA, Lee PY, Hoffman HM. Monogenic autoinflammatory disorders: conceptual overview, phenotype, and clinical approach[J]. J Allergy Clin Immunol, 2020, 146(5): 925-937. DOI: 10.1016/j.jaci. 2020.08.017.

14.Redelman-Sidi G, Glickman MS, Bochner BH. The mechanism of action of BCG therapy for bladder cancer-a current perspective[J]. Nat Rev Urol, 2014, 11(3): 153-162. DOI: 10.1038/nrurol.2014.15.

15.Stewart JH, Levine EA. Role of bacillus Calmette-Guérin in the treatment of advanced melanoma[J]. Expert Rev Anticancer Ther, 2011, 11(11): 1671-1676. DOI: 10.1586/era.11.163.

16.Villumsen M, Sørup S, Jess T, et al. Risk of lymphoma and leukaemia after bacille Calmette-Guérin and smallpox vaccination: a Danish case-cohort study[J]. Vaccine, 2009, 27(49): 6950-6958. DOI: 10.1016/j.vaccine.2009.08.103.

17.高松, 徐培钧, 郝继辉. 巨噬细胞在肿瘤发展及治疗中的研究进展[J]. 中国细胞生物学学报, 2022, 44(4): 572-582. [Gao S, Xu PJ, Hao JH. Advances in research of macrophages in tumor development and therapy[J]. Chinese Journal of Cell Biology, 2022, 44(4): 572-582.] DOI: 10.11844/cjcb.2022.04.0005.

18.王旭东, 吴利先. 结核分枝杆菌与巨噬细胞相互作用的研究进展[J]. 中国病原生物学杂志, 2015, 10(6): 571-573. [Wang XD, Wu LX. Advances in study of the interaction of Mycobacterium tuberculosis and macrophages[J]. Journal of Parasitic Biology, 2015, 10(6): 571-573.] DOI: 10.13350/j.cjpb.150622.

19.Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes[J]. Nat Rev Rheumatol, 2020, 16(6): 316-333. DOI: 10.1038/s41584-020-0413-5.

20.邓颖, 金璨, 段志豪, 等. 类风湿关节炎骨破坏的细胞网络调控及治疗研究进展[J]. 中国现代医学杂志, 2023, 33(15): 62-68. [Deng Y, Jin C, Duan ZH, et al. Advances in regulation of cellular network and treatment of bone destruction in rheumatoid arthritis[J]. China Journal of Modern Medicine, 2023, 33(15): 62-68.] DOI: 10.3969/j.issn.1005-8982.2023.15.010.

21.吴玉寒, 潘迎紫, 褚赞波, 等. 类风湿关节炎破骨细胞的活化机制及其预测指标[J]. 生命的化学, 2020, 40(3): 378-383. [Wu YH, Pan YZ, Chu ZB, et al. Mechanism of osteoclast activation and its predictors in rheumatoid arthritis[J]. Chemistry of Life, 2020, 40(3): 378-383.] DOI: 10.13488/j.smhx.20190321.

22.Bi X, Guo XH, Mo BY, et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis[J]. Ebiomedicine, 2019, 50: 408-420. DOI: 10.1016/j.ebiom.2019.11.024.

23.Yu B, Chen Y, Chen E, et al. LncRNA RNA XIST binding to GATA1 contributes to rheumatoid arthritis through its effects on proliferation of synovial fibroblasts and angiogenesis via regulation of CCN6[J]. Mol Immunol, 2023, 153: 200-211. DOI: 10.1016/j.molimm.2022. 12.004.

24.Zhu J, Tu S, Qu Q. lncRNA BZRAP1-AS1 alleviates rheumatoid arthritis by regulating miR-1286/COL5A2 axis[J]. Immun Inflamm Dis, 2022, 10(2): 163-174. DOI: 10.1002/iid3.558.

25.Zou Y, Shen C, Shen T, et al. LncRNA THRIL is involved in the proliferation, migration, and invasion of rheumatoid fibroblast-like synoviocytes[J]. Ann Transl Med, 2021, 9(17): 1368. DOI: 10.21037/atm-21-1362.

26.Elazazy O, Midan HM, Shahin RK, et al. Long non-coding RNAs and rheumatoid arthritis: pathogenesis and clinical implications[J]. Pathol Res Pract, 2023, 246: 154512. DOI: 10.1016/j.prp.2023.154512.

27.Zucchi D, Elefante E, Schilirò D, et al. One year in review 2022: systemic lupus erythematosus[J]. Clin Exp Rheumatol, 2022, 40(1): 4-14. DOI: 10.55563/clinexprheumatol/nolysy.

28.高大玉, 徐文雨, 陈兴国. 外泌体miRNA在SLE中作用的研究进展[J]. 现代免疫学, 2022, 42(4): 354-358. [Gao DY, Xu WY, Chen XG. Research progress of exosome miRNA function in systemic lupus erythematosus[J]. Current Immunology, 2022, 42(4): 354-358.] https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjQwNzA0EhBzaG15eHp6MjAyMjA0MDE1Ggh1ODcxYTZkMQ%3D%3D.

29.Walker S, Busatto S, Pham A, et al. Extracellular vesicle-based drug delivery systems for cancer treatment[J]. Theranostics, 2019, 9(26): 8001-8017. DOI: 10.7150/thno.37097.

Popular papers
Last 6 months