Objective To identify key genes potentially regulating metabolic dysfunction-associated steatohepatitis (MASH) through comprehensive mining of the Gene Expression Omnibus (GEO) database, validate their functions in vitro and in vivo models, and preliminarily reveal their potential regulatory mechanisms.
Methods Transcriptional data from mouse [choline deficient diet (CD) group vs. high-fat/high-cholesterol diet (HFHC) group; CD group vs. methionine- and choline deficient diet (MCD) group] and human (healthy vs. MASH) in the GEO database were integrated to screen differentially expressed genes and conduct enrichment analysis. In vitro MASH model [palmitic acid (PA)/oleic acid (OA) co-stimulation of mouse primary hepatocytes] and in vivo model (adeno-associated virus-mediated liver-specific gene knockout Cas9 transgenic mice fed with HFHC for 16 weeks) were constructed. The expression of candidate genes was verified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot (WB), and lipid accumulation was evaluated by Nile red staining and lipid detection (triglycerides). Serum indicators including low-density lipoprotein cholesterol (LDL-C), aspartate transaminase (AST), alanine transaminase (ALT), and lactate dehydrogenase (LDH) were detected in vivo, and liver pathological changes were assessed by hematoxylin-eosin staining (HE), picrosirius red (PSR), oil red O (ORO) staining, and immunohistochemistry (IHC). Metabolic pathways were analyzed by RNA sequencing (RNA-seq).
Results A total of 16 common differentially expressed genes (Ubd, ANAX2, TREM2, LGALS3, CAPG, LPL, CCL2, TOP2A, CD52, EMP3, MKI67, TMSB10, CCDC88A, S100A4, CRIP1, TAGLN2) were screened, among which Ubd had the highest expression level. The mRNA expression level of the Ubd gene was significantly upregulated in clinical MASH patients and mouse MASH models (P<0.05). Overexpression of Ubd in primary mouse hepatocytes aggravates lipid accumulation which is induced by PA/OA stimulation, while knockdown of Ubd can alleviate PA/OA-induced lipid accumulation. In the in vivo MASH model of mice, compared with the control group, the liver tissue of the Ubd knockout group shows significant improvement in lipid accumulation, with a significant reduction in liver ORO staining, a significant decrease in CD11b+ inflammatory cells in liver tissue, and a significant reduction in PSR staining positive areas. Mechanism analysis based on transcriptomics indicated that knockdown of Ubd could lead to significant activation of the fatty acid metabolism pathway, thereby effectively reducing MASH-related lipid accumulation and lipotoxicity.
Conclusion UBD significantly promotes MASH, possibly by inhibiting fatty acid oxidation and aggravating lipid accumulation, thereby accelerating the progression of MASH disease.
1.Carli F, Della Pepa G, Sabatini S, et al. Lipid metabolism in MASLD and MASH: from mechanism to the clinic[J]. JHEP Rep, 2024, 6(12): 101185. DOI: 10.1016/j.jhepr.2024.101185.
2.Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(4): 223-238. DOI: 10.1038/s41575-020-00381-6.
3.Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease[J]. Hepatology, 2023, 77(5): 1797-1835. DOI: 10.1097/HEP.0000000000000323.
4.Younossi ZM, Alqahtani SA, Alswat K, et al. Global survey of stigma among physicians and patients with nonalcoholic fatty liver disease[J]. J Hepatol, 2024, 80(3): 419-430. DOI: 10.1016/j.jhep.2023.11.004.
5.Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184(10): 2537-2564. DOI: 10.1016/j.cell.2021.04.015.
6.Younossi ZM, Stepanova M, Ong J, et al. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States[J]. Clin Gastroenterol Hepatol, 2021, 19(3): 580-589. e5. DOI: 10.1016/j.cgh.2020.05.064.
7.Feng G, Hernandez-Gea V, Zheng MH. Resmetirom for MASH-related cirrhosis[J]. Lancet Gastroenterol Hepatol, 2024, 9(7): 594. DOI: 10.1016/S2468-1253(24)00124-9.
8.Sabatini S, Sen P, Carli F, et al. Hepatic glucose production rises with the histological severity of metabolic dysfunction-associated steatohepatitis[J]. Cell Rep Med, 2024, 5(11): 101820. DOI: 10.1016/j.xcrm.2024.101820.
9.Xu S, Wu X, Wang S, et al. TRIM56 protects against nonalcoholic fatty liver disease by promoting the degradation of fatty acid synthase[J]. J Clin Invest, 2024, 134(5): e166149. DOI: 10.1172/JCI166149.
10.Steinberg GR, Valvano CM, De Nardo W, et al. Integrative metabolism in MASLD and MASH: pathophysiology and emerging mechanisms[J]. J Hepatol, 2025, 83(2): 584-595. DOI: 10.1016/j.jhep.2025.02.033.
11.Chen Z, Tian R, She Z, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease[J]. Free Radic Biol Med, 2020, 152: 116-141. DOI: 10.1016/j.freeradbiomed.2020.02.025.
12.Musso G, Saba F, Cassader M, et al. Lipidomics in pathogenesis, progression and treatment of nonalcoholic steatohepatitis (NASH): recent advances[J]. Prog Lipid Res, 2023, 91: 101238. DOI: 10.1016/j.plipres.2023.101238.
13.Harrison SA, Loomba R, Dubourg J, et al. Clinical trial landscape in NASH[J]. Clin Gastroenterol Hepatol, 2023, 21(8): 2001-2014. DOI: 10.1016/j.cgh.2023.03.041.
14.Gallage S, Ali A, Barragan Avila JE, et al. A 5:2 intermittent fasting regimen ameliorates NASH and fibrosis and blunts HCC development via hepatic PPARα and PCK1[J]. Cell Metab, 2024, 36(6): 1371-1393. e7. DOI: 10.1016/j.cmet.2024.04.015.
15.Llovet JM, Willoughby CE, Singal AG, et al. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(8): 487-503. DOI: 10.1038/s41575-023-00754-7.
16.Liao J, Xie X, Wang N, et al. Formononetin promotes fatty acid β-oxidation to treat non-alcoholic steatohepatitis through SIRT1/PGC-1α/PPARα pathway[J]. Phytomedicine, 2024, 124: 155285. DOI: 10.1016/j.phymed.2023.155285.
17.Bates J, Vijayakumar A, Ghoshal S, et al. Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation[J]. J Hepatol, 2020, 73(4): 896-905. DOI: 10.1016/j.jhep.2020.04.037.
18.Hu M, Zhang D, Xu H, et al. Salidroside activates the AMP‐activated protein kinase pathway to suppress nonalcoholic steatohepatitis in mice[J]. Hepatology, 2021, 74(6): 3056-3073. DOI: 10.1002/hep.32066.
19.Yang P, Gao S, Shen J, et al. TRIM21-mediated ubiquitination of SQSTM1/p62 abolishes its Ser403 phosphorylation and enhances palmitic acid cytotoxicity[J]. Autophagy, 2025, 21(1): 178-190. DOI: 10.1080/15548627.2024.2394308.
20.Shen B, Feng H, Cheng J, et al. Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways[J]. J Cell Mol Med, 2020, 24(9): 5097-5108. DOI: 10.1111/jcmm.15139.
21.Chen H, Tao L, Liang J, et al. Ubiquitin D promotes the progression of rheumatoid arthritis via activation of the p38 MAPK pathway[J]. Mol Med Rep, 2023, 27(2): 53. DOI: 10.3892/mmr.2023.12940.
22.Negi H, Ravichandran A, Dasgupta P, et al. Plasticity of the proteasome-targeting signal Fat10 enhances substrate degradation[J]. Elife, 2024, 13: e91122. DOI: 10.7554/eLife.91122.
23.Liu X, Ge J, Chen C, et al. FAT10 protects against ischemia-induced ventricular arrhythmia by decreasing Nedd4-2/Nav1. 5 complex formation[J]. Cell Death Dis, 2021, 12(1): 25. DOI: 10.1038/s41419-020-03290-3.
24.Guo Y, Wu H, Wiesmüller L, et al. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance[J]. Cell Death Dis, 2024, 15(6): 412. DOI: 10.1038/s41419-024-06783-7.
25.White J, Suklabaidya S, Vo MT, et al. Multifaceted roles of TAX1BP1 in autophagy[J]. Autophagy, 2023, 19(1): 44-53. DOI: 10.1080/15548627.2022.2070331.
26.Zellner S, Schifferer M, Behrends C. Systematically defining selective autophagy receptor-specific cargo using autophagosome content profiling[J]. Mol Cell, 2021, 81(6): 1337-1354. e8. DOI: 10.1016/j.molcel.2021.01.009.
27.Liu XM, Wang ZH, Wei QX, et al. Equol exerts anti-tumor effects on choriocarcinoma cells by promoting TRIM21-mediated ubiquitination of ANXA2[J]. Biol Direct, 2024, 19(1): 78. DOI: 10.1186/s13062-024-00519-5.
28.Wu X, Qian L, Zhao H, et al. CXCL12/CXCR4: an amazing challenge and opportunity in the fight against fibrosis[J]. Ageing Res Rev, 2023, 83: 101809. DOI: 10.1016/j.arr.2022.101809.
29.Wang X, He Q, Zhou C, et al. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development[J]. Immunity, 2023, 56(1): 58-77. e11. DOI: 10.1016/j.immuni.2022.11.013.
30.Tacke F, Puengel T, Loomba R, et al. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH[J]. J Hepatol, 2023, 79(2): 552-566. DOI: 10.1016/j.jhep.2023.03.038.
31.Chen H, Liang B, Luo X, et al. IKBIP might be a potential prognostic biomarker for glioblastoma multiforme[J]. Int Immunopharmacol, 2023, 118: 110030. DOI: 10.1016/j.intimp. 2023.110030.
32.Duan X, Li H, Wang M, et al. PSMC2/ITGA6 axis plays critical role in the development and progression of hepatocellular carcinoma[J]. Cell Death Discov, 2021, 7(1): 217. DOI: 10.1038/s41420-021-00585-y.
33.Li Z, Zhang B, Liu Q, et al. Genetic association of lipids and lipid-lowering drug target genes with non-alcoholic fatty liver disease[J]. EBioMedicine, 2023, 90: 104543. DOI: 10.1016/j.ebiom.2023.104543.
34.An Y, Liu W, Yang Y, et al. Identification and validation of a novel nine-gene prognostic signature of stem cell characteristic in hepatocellular carcinoma[J]. J Appl Genet, 2025, 66(1): 127-140. DOI: 10.1007/s13353-024-00850-7.
35.Wu X, Zhou S, Wang L, et al. Circ_103809 aggravates the malignant phenotype of pancreatic cancer through modulating miR-197-3p/TSPAN3 axis[J]. Mol Biotechnol, 2024, 66(9): 2455-2466. DOI: 10.1007/s12033-023-00874-0.
36.Man S, Deng Y, Ma Y, et al. Prevalence of liver steatosis and fibrosis in the general population and various high-risk populations: a nationwide study with 5.7 million adults in China[J]. Gastroenterology, 2023, 165(4): 1025-1040. DOI: 10.1053/j.gastro.2023.05.053.
37.Zhou J, Zhou F, Wang W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71(5): 1851-1864. DOI: 10.1002/hep.31150.
38.Yip TC, Fan JG, Wong VW. China's fatty liver crisis: a looming public health emergency[J]. Gastroenterology, 2023, 165(4): 825-827. DOI: 10.1053/j.gastro.2023.06.008.
39.Lou TW, Yang RX, Fan JG. The global burden of fatty liver disease: the major impact of China[J]. Hepatobiliary Surg Nutr, 2024, 13(1): 119. DOI: 10.21037/hbsn-23-556.
40.Wimalarathne MM, Wilkerson-Vidal QC, Hunt EC, et al. The case for FAT10 as a novel target in fatty liver diseases[J]. Front Pharmacol, 2022, 13: 972320. DOI: 10.3389/fphar.2022.972320.
41.Zhang Y, Zuo Z, Liu B, et al. FAT10 promotes hepatocellular carcinoma (HCC) carcinogenesis by mediating P53 degradation and acts as a prognostic indicator of HCC[J]. J Gastrointest Oncol, 2021, 12(4): 1823-1837. DOI: 10.21037/jgo-21-374.
42.Tsouka S, Kumar P, Seubnooch P, et al. Transcriptomics-driven metabolic pathway analysis reveals similar alterations in lipid metabolism in mouse MASH model and human[J]. Commun Med (Lond), 2024, 4(1): 39. DOI: 10.1038/s43856-024-00465-3.
43.Deja S, Fletcher JA, Kim CW, et al. Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability[J]. Cell Metab, 2024, 36(5): 1088-1104. e12. DOI: 10.1016/j.cmet.2024.02.004.
44.Chen H, Tao L, Liang J, et al. Ubiquitin D promotes the progression of rheumatoid arthritis via activation of the p38 MAPK pathway[J]. Mol Med Rep, 2023, 27(2): 53. DOI: 10.3892/mmr.2023.12940.
45.Arshad M, Abdul Hamid N, Chan MC, et al. NUB1 and FAT10 proteins as potential novel biomarkers in cancer: a translational perspective[J]. Cells, 2021, 10(9): 2176. DOI: 10.3390/cells10092176.
46.Iwata A, Maruyama J, Natsuki S, et al. Egr2 drives the differentiation of Ly6Chi monocytes into fibrosis-promoting macrophages in metabolic dysfunction-associated steatohepatitis in mice[J]. Commun Biol, 7(1): 681. DOI: 10.1038/s42003-024-06357-5.
47.Dong J, Li M, Peng R, et al. ACACA reduces lipid accumulation through dual regulation of lipid metabolism and mitochondrial function via AMPK-PPARα-CPT1A axis[J]. J Transl Med, 2024, 22(1): 196. DOI: 10.1186/s12967-024-04942-0.
48.Zheng W, Guan F, Xu G, et al. FAT10 silencing prevents liver fibrosis through regulating SIRT1 expression in hepatic stellate cells[J]. Int J Med Sci, 2023, 20(4): 557-565. DOI: 10.7150/ijms.77367.