Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 37,2024 No.8 Detail

Causal association between systemic inflammatory factors and the risk of hepatocellular carcinoma based on Mendelian randomization

Published on Sep. 04, 2024Total Views: 1367 times Total Downloads: 264 times Download Mobile

Author: LI Xinyu 1, 2 NIE Duorui 1 XIAO Tingfen 1, 2 CAO Jun 1 WANG Zhiqi 1, 2 XU Fei 1, 2 CHEN Chang 1

Affiliation: 1. School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China 2. National First-Class Major Construction Point of Chinese Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China

Keywords: Inflammatory factors Hepatocellular carcinoma Mendelian randomization analysis GWAS

DOI: 10.12173/j.issn.1004-4337.202405145

Reference: Li XY, Nie DR, Xiao TF, Cao J, Wang ZQ, Xu F, Chen C. Causal association between systemic inflammatory factors and the risk of hepatocellular carcinoma based on Mendelian randomization[J]. Journal of Mathematical Medicine, 2024, 37(8): 592-599. DOI: 10.12173/j.issn.1004-4337.202405001[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the causal relationship between systemic inflammatory factors and the risk of hepatocellular carcinoma.

Methods  This study was based on the published genome-wide association study (GWAS) database. The exposure factor was 41 systemic inflammatory regulators. The data were derived from a Finland study with a sample size of 8 293 people. The outcome variable was hepatocellular carcinoma, which was derived from the Finnish database (FINNGen). Two-sample Mendelian randomization analysis was performed using inverse variance weighted (IVW), MR-Egger, weighted median estimator (WME), and weighted mode (WM) MR-Egger was carried out for pleiotropy analysis, Cochran's Q test was used for heterogeneity analysis, and leave-one-out method was used for sensitivity analysis.

Results  IVW results of two-sample Mendelian randomization analysis showed that TNF-related apoptosis-inducing ligand (TRAIL) level (OR=0.77, 95%CI=0.61-0.97, P=0.025), macrophage-stimulating factor (MCSF) level (OR=0.69, 95%CI=0.50-0.95, P=0.024) and interleukin-18 (IL-18) level (OR=0.77, 95%CI=0.61-0.97, P=0.026) were negatively correlated with the risk of hepatocellular carcinoma.

Conclusion  TRAIL, IL-18 and MCSF had potential negative causal association with hepatocellular carcinoma, which migh be protective factors for hepatocellular carcinoma.

Full-text
Please download the PDF version to read the full text: download
References

1.Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.

2.张顺娟, 夏运风. 炎症因子在血液透析患者合并抑郁中的研究进展[J]. 中国血液净化, 2023, 22(12): 916-919. [Zhang SJ, Xia YF. Research progress in inflammatory factors in hemodialysis patients complicated with depression[J]. Chinese Journal of Blood Purification, 2023, 22(12): 916-919.] DOI: 10.3969/j.issn.1671-4091.2023.12.007.

3.El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma[J]. Gastroenterology, 2012, 142(6): 1264-1273. DOI: 10.1053/j.gastro.2011.12.061.

4.赵枭卿, 周虎, 冷静. 肝癌细胞外泌体诱导肝癌细胞炎症因子的表达[J]. 免疫学杂志, 2020, 36(5): 410-415. [Zhao XQ, Zhou H, Leng J. Hepatocellular carcinoma cells-derived exosomes induce the expression of inflammatory cytokines in hepatocellular carcinoma cells[J]. Immunological Journal, 2020, 36(5): 410-415.] DOI: 10.13431/j.cnki.immunol.j.20200066.

5.沈国定, 姜润秋, 孙倍成. 炎症相关因子IL-1β, TGF-β及MCP-1在肝细胞肝癌的表达[J]. 江苏医药, 2011, 37(7): 797-799. [Shen GD, Jiang RQ, Sun  BC. Expressions of inflammation-associated factors IL-1β, TGF-β and MCP-1 in human hepatocellular carcinoma[J]. Jiangsu Medical Journal, 2011, 37(7): 797-799.] DOI: 10.19460/j.cnki.0253-3685.2011.07.018.

6.黄高铂, 连建奇, 张野. 白细胞介素22与肝脏疾病关系的研究进展[J]. 细胞与分子免疫学杂志, 2015, 31(9): 1280-1283. [Huang GB, Lian JQ, Zhang Y. Research progress on the relationship between interleukin-22 and liver disease[J]. Chinese Journal of Cellular and Molecular Immunology, 2015, 31(9): 1280-1283.] DOI: 10.13423/j.cnki.cjcmi.007470.

7.何松青, 陈孝平. 肝细胞肝癌病人血清IL-12、IL-2、sIL-2R水平的相关性[J]. 中华普通外科杂志, 2002, 17(4): 18-20. [He SQ, Chen XP. Interleukin-2 in its relation with interleukin-12 and soluble interleukin-2 receptor in patients with hepatocellular carcinoma[J]. Chinese Journal of General Surgery, 2002, 17(4): 18-20.] DOI: 10.3760/j.issn:1007-631X.2002.04.007.

8.Hu M, Tong Y, Fang H, et al. IL36 indicating good prognosis in human hepatocellular carcinoma[J]. J Cancer, 2020, 11(21): 6248-6255. DOI: 10.7150/jca.47106.

9.刘明, 高亚, 杨珂璐, 等. 孟德尔随机化研究的报告规范(STROBE-MR)解读[J]. 中国循证医学杂志, 2022, 22(8): 978-987. [Liu M, Gao  Y, Yang KL, et al. Interpretation of STROBE-MR: a statement for strengthening the reporting ofobservational studies in epidemiology using Mendelian randomization[J]. Chinese Journal of Evidence-Based Medicine, 2022, 22(8): 978-987.] http://qikan.cqvip.com/Qikan/Article/Detail?id=7107921163.

10.Zheng J, Baird D, Borges MC, et al. Recent developments in Mendelian randomization studies[J]. Curr Epidemiol Rep, 2017, 4(4): 330-345. DOI: 10.1007/s40471-017-0128-6.

11.Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613(7944): 508-518. DOI: 10.1038/s41586-023-05837-8.

12.Ahola-Olli AV, Würtz P, Havulinna AS, et al. Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors[J]. Am J Hum Genet, 2017, 100(1): 40-50. DOI: 10.1016/j.ajhg.2016.11.007.

13.Slatkin M. Linkage disequilibrium-understanding the evolutionary past and maping the medical future[J]. Nat Rev Genet, 2008, 9(6): 477-485. DOI: 10.1038/nrg2361.

14.Burgess S, Thompson SG, CRP CHD genetics collaboration. Avoiding bias from weak instruments in mendelian randomization studies[J]. Int J Epidemiol, 2011, 40(3): 755-764. DOI: 10.1093/ije/dyr036.

15.Chen H, Zhang Y, Li S, et al. The association between genetically predicted systemic inflammatory regulators and polycystic ovary syndrome: a mendelian randomization study[J]. Front Endocrinol (Lausanne), 2021, 12: 731569. DOI: 10.3389/fendo.2021.731569.

16.Yuan X, Gajan A, Chu Q, et al. Developing TRAIL/TRAIL death receptor-based cancer therapies[J]. Cancer Metastasis Rev, 2018, 37(4): 733-748. DOI: 10.1007/s10555-018-9728-y.

17.Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis[J]. Immunity, 1995, 3(6): 673-682. DOI: 10.1016/1074-7613(95)90057-8.

18.Allen JE, El-Deiry WS. Regulation of the human TRAIL gene[J]. Cancer Biol Ther, 2012, 13(12): 1143-1151. DOI: 10.4161/cbt.21354.

19.Piras-Straub K, Khairzada K, Trippler M, et al. TRAIL expression levels in human hepatocellular carcinoma have implications for tumor growth, recurrence and survival[J]. Int J Cancer, 2015, 136(4): E154-E160. DOI: 10.1002/ijc.29139.

20.Oikonomou E, Pintzas A. The TRAIL of oncogenes to apoptosis[J]. Biofactors, 2013, 39(4): 343-354. DOI: 10.1002/biof.1112.

21.代雪飞, 吕雄文. TRAIL及其受体在肝脏疾病中的作用研究进展[J]. 安徽医科大学学报, 2017, 52(2): 304-307. [Dai XF, Lyu XW. Research progress on the role of TRAIL and its receptors in liver disease[J]. Acta Universitatis Medicinalis Anhui, 2017, 52(2): 304-307.] DOI: 10.19405/j.cnki.issn1000-1492.2017.02.037.

22.Helmy SA, El-Mesery M, El-Karef A, et al. Thymoquinone upregulates TRAIL/TRAILR2 expression and attenuates hepatocellular carcinoma in vivo model[J]. Life Sci, 2019, 233: 116673. DOI: 10.1016/j.lfs.2019.116673.

23.冯全林, 曹晓蕾. TRAIL重组蛋白诱导肝癌细胞HepG2凋亡的研究[J]. 苏州大学学报(医学版), 2009, 29(6): 1072-1075. [Feng QL, Cao XL. Apoptpsis-inducing effect of HrsTRAIL on hepatoma cell line HepG2[J]. Suzhou University Journal of Medical Science, 2009, 29(6): 1072-1075.] https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjQwNzA0EhBzenl4eXhiMjAwOTA2MDE0GghpcGdiYWVjcA%3D%3D.

24.Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future[J]. Immunity, 2013, 39(6): 1003-1018. DOI: 10.1016/j.immuni.2013.11.010.

25.杨升, 卢辉山, 陈湘琦, 等. 白细胞介素-18对Lewis肺癌小鼠移植瘤生长及移植瘤细胞凋亡的作用[J]. 肿瘤防治研究, 2009, 36(7): 563-565. [Yang S, Lu HS, Chen XQ, et al. Effect of IL-18 on growth and apoptosis of Lewis lung cancer xenografts in C57BL/6 mice[J]. Cancer Research on Prevention and Treatment, 2009, 36(7): 563-565.] DOI: 10.3971/j.issn.1000-8578.2009.07.007.

26.李文玲, 赵文清, 周娜静, 等. 外源性IL-18基因对C6胶质瘤细胞体内致瘤抑制作用[J]. 细胞生物学杂志, 2008, 30(1): 95-99. [Li WL, Zhao WQ, Zhou NJ, et al. The exogenous IL-18 gene inhibits C6 glioma cell tumorigenesis in vivo[J]. Chinese Journal of Cell Biology, 2008, 30(1): 95-99.] DOI: 10.3969/j.issn.1674-7666. 2008.01.019.

27.崔澂, 郝淑维, 李新伟, 等. IL-18基因转染对小鼠卵巢癌OVHM体外增殖及体内成瘤的影响[J]. 细胞与分子免疫学杂志, 2008, 24(6): 577-580. [Cui C, Hao SW, Li XW, et al. Effects of IL-18 gene transfection on the proliferation in vitro and tumorigenesis in vivo of mouse ovarian cancer cell line OVHM[J]. Chinese Journal of Cellular and Molecular Immunology, 2008, 24(6): 577-580.] DOI: 10.3321/j.issn:1007-8738.2008.06.011.

28.官成浓, 廖湘晖, 罗海清, 等. 良恶性原发肝肿瘤患者血IL-18及IL-18BP含量测定及临床意义[J]. 中国肿瘤临床, 2009, 36(7): 365-367. [Guan CN, Liao XH, Luo HQ, et al. Clinical significance of serum IL-18 and IL-18BP in patients with benign or malignant primary liver tumor[J]. Chinese Journal of Clinical Oncology, 2009, 36(7): 365-367.] DOI: 10.3969/j.issn.1000-8179. 2009.07.002.

29.Markowitz GJ, Yang P, Fu J, et al. Inflammation-dependent IL18 signaling restricts hepatocellular carcinoma growth by enhancing the accumulation and activity of tumor-infiltrating lymphocytes[J]. Cancer Res, 2016, 76(8): 2394-2405. DOI: 10.1158/0008-5472.can-15-1548.

30.方艳秋, 米旭光, 李首庆, 等. 重组鼠白细胞介素18在肝癌小鼠体内的抗肿瘤作用[J]. 吉林大学学报(医学版), 2017, 43(3): 550-554. [Fang YQ, Mi XG, Li SQ, et al. Anti-tumor effect of rmIL-18 in mice with hepatocellular carcinoma[J]. Journal of Jilin University (Medicine Edition), 2017, 43(3): 550-554.] DOI: 10.13481/j.1671-587x.20170317.

31.刘磊玉, 唐圣松. 巨噬细胞集落刺激因子与肿瘤 [J]. 国外医学(肿瘤学分册), 2005, 32(7): 499-503. [Liu  LY, Tang SS. Macrophage colony-stimulating factor and tumors[J]. Journal of International Oncology, 2005, 32(7): 499-503.] DOI: 10.3760/cma.j.issn.1673-422X. 2005.07.006.

32.Kirma N, Luthra R, Jones J, et al. Overexpression of the colony-stimulating factor (CSF-1) and/or its receptor c-fms in mammary glands of transgenic mice results in hyperplasia and tumor formation[J]. Cancer Res, 2004, 64(12): 4162-4170. DOI: 10.1158/0008-5472.can-03-2971.

33.Eubank TD, Galloway M, Montague CM, et al. M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes[J]. J Immunol, 2003, 171(5): 2637-2643. DOI: 10.4049/jimmunol.171.5.2637.

34.Kawakami Y, Nagai N, Ohama K, et al. Macrophage-colony stimulating factor inhibits the growth of human ovarian cancer cells in vitro[J]. Eur J Cancer, 2000, 36(15): 1991-1997. DOI: 10.1016/s0959-8049(00)00282-3.

Popular papers
Last 6 months