In recent years, obesity has become a significant global health concern. Numerous researches have shown the dietary polyphenols can help weight control. However, the bioavailability of polyphenols in the human body is notably low. A small part of the polyphenols can be absorbed in the small intestine, while most of the polyphenols are utilized by the intestinal bacteria in the colon, so as to play their biological roles. Gut microbiota, which is mainly composed of intestinal bacteria and its metabolites, is a key factor for dietary polyphenols to play a role in weight loss. This article reviewed the research progress of gut microbiota involved in the prevention and treatment of obesity by polyphenols.
1.World Health Organisation. Obesity and overweight[EB/OL]. (2024-03-01). https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.
2.Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics[J]. Front Endocrinol (Lausanne), 2021, 12: 706978. DOI: 10.3389/fendo.2021,706978.
3.Chao AM, Tronieri JS, Amaro A, et al. Semaglutide for the treatment of obesity[J]. Trends Cardiovasc Med, 2023, 33(3): 159-166. DOI: 10.1016/j.tcm.2021.12.008.
4.Williamson G. The role of polyphenols in modern nutrition[J]. Nutr Bull, 2017, 42(3): 226-235. DOI: 10.1111/nbu.12278.
5.Cardona F, Andrés-Lacueva C, Tulipani S, et al. Benefits of polyphenols on gut microbiota and implications in human health[J]. J Nutr Biochem, 2013, 24(8): 1415-1422. DOI: 10.1016/j.jnutbio.2013.05.001.
6.Geng J, Ni Q, Sun W, et al. The links between gut microbiota and obesity and obesity related diseases[J]. Biomed Pharmacother, 2022, 147: 112678. DOI: 10.1016/j.biopha.2022.112678.
7.Kanner J. Food polyphenols as preventive medicine[J]. Antioxidants (Basel), 2023, 12(12): 2103. DOI: 10.3390/antiox12122103.
8.Rudrapal M, Rakshit G, Singh RP, et al. Dietary polyphenols: review on chemistry/sources, bioavailability/metabolism, antioxidant effects, and their role in disease management[J]. Antioxidants (Basel), 2024, 13(4): 429. DOI: 10.3390/antiox13040429.
9.Li H, Guo H, Luo Q, et al. Current extraction, purification, and identification techniques of tea polyphenols: an updated review[J]. Crit Rev Food Sci Nutr, 2023, 63(19): 3912-3930. DOI: 10.1080/10408398.2021.1995843.
10.Chen Y, Cheng S, Dai J, et al. Molecular mechanisms and applications of tea polyphenols: a narrative review[J]. J Food Biochem, 2021, 45(10): e13910. DOI: 10.1111/jfbc.13910.
11.Carneiro RCV, Ye L, Baek N, et al. Vine tea (Ampelopsis grossedentata): a review of chemical composition, functional properties, and potential food applications[J]. J Funct Foods, 2021, 76: 104317. DOI: 10.1016/j.jff.2020. 104317.
12.Zhang Q, Zhao Y, Zhang M, et al. Recent advances in research on vine tea, a potential and functional herbal tea with dihydromyricetin and myricetin as major bioactive compounds[J]. J Pharm Anal, 2021, 11(5): 555-563. DOI: 10.1016/j.jpha.2020.10.002.
13.Xie L, Tang Q, Yao D, et al. Effect of decaffeinated green tea polyphenols on body fat and precocious puberty in obese girls: a randomized controlled trial[J]. Front Endocrinol (Lausanne), 2021, 12: 736724. DOI: 10.3389/fendo.2021.736724.
14.Zhang Y, Tang N, Xia W, et al. The effect of green tea supplementation on the anthropometric outcomes in overweight and obese women: a time and dose-response meta-analysis of randomized controlled trials[J]. Crit Rev Food Sci Nutr, 2023, 10: 1-10. DOI: 10.1080/10408398.2023.2220796.
15.Naumovski N, Panagiotakos DB, D'Cunha NM. Untangling the 2-way relationship between red wine polyphenols and gut microbiota[J]. Gastroenterology, 2020, 158(1): 48-51. DOI: 10.1053/j.gastro.2019.10.015.
16.Buljeta I, Pichler A, Šimunović J, et al. Beneficial effects of red wine polyphenols on human health: comprehensive review[J]. Curr Issues Mol Biol, 2023, 45(2): 782-798. DOI: 10.3390/cimb45020052.
17.Vidot DC, Stoutenberg M, Gellman M, et al. Alcohol consumption and metabolic syndrome among Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos[J]. Metab Syndr Relat Disord, 2016, 14(7): 354-362. DOI: 10.1089/met.2015.0171.
18.Flechtner-Mors M, Biesalski HK, Jenkinson CP, et al. Effects of moderate consumption of white wine on weight loss in overweight and obese subjects[J]. Int J Obes Relat Metab Disord, 2004, 28(11): 1420-1426. DOI: 10.1038/sj.ijo.0802786.
19.Gómez-Zorita S, González-Arceo M, Fernández-Quintela A, et al. Scientific evidence supporting the beneficial effects of isoflavones on human health[J]. Nutrients, 2020, 12(12): 3853. DOI: 10.3390/nu12123853.
20.Kim IS. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans[J]. Antioxidants (Basel), 2021, 10(7): 1064. DOI: 10.3390/antiox10071064.
21.Nakai S, Fujita M, Kamei Y. Health promotion effects of soy isoflavones[J]. J Nutr Sci Vitaminol (Tokyo), 2020, 66(6): 502-507. DOI: 10.3177/JNSV.66.502.
22.Zhu J, Zhao Q, Qiu Y, et al. Soy isoflavones intake and obesity in Chinese Adults: a cross-sectional study in Shanghai, China[J]. Nutrients, 2021, 13(8): 2715. DOI: 10.3390/nu13082715.
23.Mu Y, Kou T, Wei B, et al. Soy products ameliorate obesity-related anthropometric indicators in overweight or obese asian and non-menopausal women: a meta-analysis of randomized controlled trials[J]. Nutrients, 2019, 11(11): 2790. DOI: 10.3390/nu11112790.
24.Verediano TA, Stampini Duarte Martino H, Dias Paes MC, et al. Effects of anthocyanin on intestinal health: a systematic review[J]. Nutrients, 2021, 13(4): 1331. DOI: 10.3390/nu13041331.
25.Qi Q, Chu M, Yu X, et al. Anthocyanins and proanthocyanidins: chemical structures, food sources, bioactivities, and product development[J]. Food Reviews International, 2022, 39(7): 4581-4609. DOI: 10.1080/87559129.2022.2029479.
26.Sllva AS, Nabavi SF, Saeedi M, et al. Recent advances in natural products analysis[M]. Leiden: Elsevier, 2020: 132-146.
27.Sallam IE, Abdelwareth A, Attia H, et al. Effect of gut microbiota biotransformation on dietary tannins and human health implications[J]. Microorganisms, 2021, 9(5): 965. DOI: 10.3390/microorganisms9050965.
28.Sorrenti V, Ali S, Mancin L, et al. Cocoa polyphenols and gut microbiota interplay: bioavailability, prebiotic effect, and impact on human health[J]. Nutrients, 2020, 12(7): 1908. DOI: 10.3390/nu12071908.
29.Tang R, Yu H, Ruan Z, et al. Effects of food matrix elements (dietary fibres) on grapefruit peel flavanone profile and on faecal microbiota during in vitro fermentation[J]. Food Chem, 2022, 371: 131065. DOI: 10.1016/j.foodchem.2021.131065.
30.Miao M, Xiang L. Pharmacological action and potential targets of chlorogenic acid[J]. Adv Pharmacol, 2020, 87: 71-88. DOI: 10.1016/bs.apha.2019.12.002.
31.Yan Y, Zhou X, Guo K, et al. Use of chlorogenic acid against diabetes mellitus and its complications[J]. J Immunol Res, 2020, 2020: 9680508. DOI: 10.1155/2020/ 9680508.
32.Pushpanathan P, Mathew GS, Selvarajan S, et al. Gut microbiota and its mysteries[J]. Indian J Med Microbiol, 2019, 37(2): 268-277. DOI: 10.4103/ijmm.IJMM_19_373.
33.Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue[J]. Nat Rev Gastroenterol Hepatol, 2024, 21(3): 164-183. DOI: 10.1038/s41575-023-00867-z.
34.Duan M, Wang Y, Zhang Q, et al. Characteristics of gut microbiota in people with obesity[J]. PLoS One, 2021, 16(8): e0255446. DOI: 10.1371/journal.pone.0255446.
35.Hervert-Hernández D, Goñi I. Dietary polyphenols and human gut microbiota: a review[J]. Food reviews international, 2011, 27(2): 154-169. DOI: 10.1080/ 87559129.2010.535233.
36.Cheng H, Zhang D, Wu J, et al. Interactions between gut microbiota and polyphenols: a mechanistic and metabolomic review[J]. Phytomedicine, 2023, 119: 154979. DOI: 10.1016/j.phymed.2023.154979.
37.Corrêa TAF, Rogero MM, Hassimotto NMA, et al. The two-way polyphenols-microbiota interactions and their effects on obesity and related metabolic diseases[J]. Front Nutr, 2019, 6: 188. DOI: 10.3389/fnut.2019.00188.
38.Makarewicz M, Drożdż I, Tarko T, et al. The interactions between polyphenols and microorganisms, especially gut microbiota[J]. Antioxidants (Basel), 2021, 10(2): 188. DOI: 10.3390/antiox10020188.
39.Zhou F, Li YL, Zhang X, et al. Polyphenols from Fu brick tea reduce obesity via modulation of gut microbiota and gut microbiota-related intestinal oxidative stress and barrier function[J]. J Agric Food Chem, 2021, 69(48): 14530-14543. DOI: 10.1021/acs.jafc.1c04553.
40.Ushiroda C, Naito Y, Takagi T, et al. Green tea polyphenol (epigallocatechin-3-gallate) improves gut dysbiosis and serum bile acids dysregulation in high-fat diet-fed mice[J]. J Clin Biochem Nutr, 2019, 65(1): 34-46. DOI: 10.3164/jcbn.18-116.
41.Liao Y, Wang C, Gao Z, et al. Anti-obesity mechanism of Ganpu tea revealed by microbiome, metabolome and transcriptome analyses[J]. Food Chem, 2023, 412: 135048. DOI: 10.1016/j.foodchem.2022.135048.
42.Liu Z, Chen Q, Zhang C, et al. Comparative study of the anti-obesity and gut microbiota modulation effects of green tea phenolics and their oxidation products in high-fat-induced obese mice[J]. Food Chem, 2022, 367: 130735. DOI: 10.1016/j.foodchem.2021.130735.
43.Ye J, Zhao Y, Chen X, et al. Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice[J]. Food Res Int, 2021, 144: 110360. DOI: 10.1016/j.foodres.2021.110360.
44.Yaskolka Meir A, Rinott E, Tsaban G, et al. Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial[J]. Gut, 2021, 70(11): 2085-2095. DOI: 10.1136/gutjnl-2020-323106.
45.Rinott E, Meir AY, Tsaban G, et al. The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial[J]. Genome Med, 2022, 14(1): 29. DOI: 10.1186/s13073-022-01015-z.
46.Song Y, Sun L, Ma P, et al. Dihydromyricetin prevents obesity via regulating bile acid metabolism associated with the farnesoid X receptor in ob/ob mice[J]. Food Funct, 13(5): 2491-2503. DOI: 10.1039/d1fo03971g.
47.Moreno-Indias I, Sánchez-Alcoholado L, Pérez-Martínez P, et al. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients[J]. Food Funct, 2016, 7(4): 1775-1787. DOI: 10.1039/c5fo00886g.
48.Wang P , Li D, Ke W, et al. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice[J]. Int J Obes (Lond), 2020, 44(1): 213-225. DOI: 10.1038/s41366-019-0332-1.
49.Most J, Penders J, Lucchesi M, et al. Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women[J]. Eur J Clin Nutr, 2017, 71(9): 1040-1045. DOI: 10.1038/ejcn.2017.89.
50.Huang L, Zheng T, Hui H, et al. Soybean isoflavones modulate gut microbiota to benefit the health weight and metabolism[J]. Front Cell Infect Microbiol, 2022, 12: 1004765. DOI: 10.3389/fcimb.2022.1004765.
51.Luo Q, Cheng D, Huang C, et al. Improvement of colonic immune function with soy isoflavones in high-fat diet-induced obese rats[J]. Molecules, 2019, 24(6): 1139. DOI: 10.3390/molecules24061139.
52.Guevara-Cruz M, Godinez-Salas ET, Sanchez-Tapia M, et al. Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle AMPK activation in obese subjects[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e000948. DOI: 10.1136/bmjdrc-2019-000948.
53.Liu J, Hao W, He Z, et al. Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet[J]. Eur J Nutr, 2021, 60(5): 2735-2746. DOI: 10.1007/s00394-020-02446-3.
54.Huang F, Marungruang N, Kostiuchenko O, et al. Identification of nordic berries with beneficial effects on cognitive outcomes and gut microbiota in high-fat-fed middle-aged C57BL/6J mice[J]. Nutrients, 2022, 14(13): 2734. DOI: 10.3390/nu14132734.
55.Wu S, Hu R, Nakano H, et al. Modulation of gut microbiota by Lonicera caerulea L. berry polyphenols in a mouse model of fatty liver induced by high fat diet[J]. Molecules, 2018, 23(12): 3213. DOI: 10.3390/molecules23123213.
56.Weikart DK, Indukuri VV, Racine KC, et al. Effect of processing on the anti-inflammatory efficacy of cocoa in a high fat diet-induced mouse model of obesity[J]. J Nutr Biochem, 2022, 109: 109117. DOI: 10.1016/j.jnutbio.2022.109117.
57.Zhang Z, Liu C, Fang W, et al. Research progress on the lipid-lowering and weight loss effects of tea and the mechanism of its functional components[J]. J Nutr Biochem, 2023, 112: 109210. DOI: 10.1016/j.jnutbio.2022.109210.
58.Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease[J]. Microorganisms, 2020, 8(11): 1715. DOI: 10.3390/microorganisms8111715.
59.Cani PD, Depommier C, Derrien M, et al. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(10): 625-637. DOI: 10.1038/s41575-022-00631-9.
60.Zhou J, Tang L, Shen CL, et al. Green tea polyphenols boost gut-microbiota-dependent mitochondrial TCA and urea cycles in Sprague-Dawley rats[J]. J Nutr Biochem, 2020, 81: 108395. DOI: 10.1016/j.jnutbio.2020.108395.
61.Zhang Y, Kang C, Wang XL, et al. Dietary factors modulate colonic tumorigenesis through the interaction of gut microbiota and host chloride channels[J]. Mol Nutr Food Res, 2018, 62(5): 1700554. DOI: 10.1002/mnfr.201700554.
62.Fan L, Zhao X, Tong Q, et al. Interactions of dihydromyricetin, a flavonoid from vine tea (Ampelopsis grossedentata) with gut microbiota[J]. J Food Sci, 2018, 83(5): 1444-1453. DOI: 10.1111/1750-3841.14128.
63.Nash V, Ranadheera CS, Georgousopoulou EN, et al. The effects of grape and red wine polyphenols on gut microbiota-a systematic review[J]. Food Res Int, 2018, 113: 277-287. DOI: 10.1016/j.foodres.2018.07.019.
64.Belda I, Cueva C, Tamargo A, et al. A multi-omics approach for understanding the effects of moderate wine consumption on human intestinal health[J]. Food Funct, 2021, 12(9): 4152-4164. DOI: 10.1039/d0fo02938f.
65.Nunes C, Figueiredo R, Laranjinha J, et al. Intestinal cytotoxicity induced by Escherichia coli is fully prevented by red wine polyphenol extract: mechanistic insights in epithelial cells[J]. Chem Biol Interact, 2019, 310: 108711. DOI: 10.1016/j.cbi.2019.06.024.
66.Chaplin A, Carpéné C, Mercader J. Resveratrol, metabolic syndrome, and gut microbiota[J]. Nutrients, 2018, 10(11): 1651. DOI: 10.3390/nu10111651.
67.Wang P, Wang J, Li D, et al. Targeting the gut microbiota with resveratrol: a demonstration of novel evidence for the management of hepatic steatosis[J]. J Nutr Biochem, 2020, 81: 108363. DOI: 10.1016/j.jnutbio.2020.108363.
68.Chen P, Sun J, Liang Z, et al. The bioavailability of soy isoflavones in vitro and their effects on gut microbiota in the simulator of the human intestinal microbial ecosystem[J]. Food Res Int, 2022, 152: 110868. DOI: 10.1016/j.foodres.2021.110868.
69.Shah RD, Tang ZZ, Chen G, et al. Soy food intake associates with changes in the metabolome and reduced blood pressure in a gut microbiota dependent manner[J]. Nutr Metab Cardiovasc Dis, 2020, 30(9): 1500-1511. DOI: 10.1016/j.numecd.2020.05.001.
70.Coutinho-Wolino KS, Melo MFS, Mota JC, et al. Blueberry, cranberry, raspberry, and strawberry as modulators of the gut microbiota: target for treatment of gut dysbiosis in chronic kidney disease? From current evidence to future possibilities[J]. Nutr Rev, 2024, 82(2): 248-261. DOI: 10.1093/nutrit/nuad048.
71.Sorrenti V, Ali S, Mancin L, et al. Cocoa polyphenols and gut microbiota interplay: bioavailability, prebiotic effect, and impact on human health[J]. Nutrients, 2020, 12(7): 1908. DOI: 10.3390/nu12071908.
72.Kumari M, Kozyrskyj AL. Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation[J]. Obes Rev, 2017, 18(1): 18-31. DOI: 10.1111/obr.12484.
73.Lin S, Wang Z, Lam KL, et al. Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites[J]. Food Nutr Res, 2019, 63. DOI: 10.29219/fnr.v63.1518.
74.Murugesan S, Nirmalkar K, Hoyo-Vadillo C, et al. Gut microbiome production of short-chain fatty acids and obesity in children[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(4): 621-625. DOI: 10.1007/s10096-017-3143-0.
75.Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3): 189-200. DOI: 10.1080/19490976.2015.1134082.
76.Zhang X, Zhu XL, Sun YK, et al. Fermentation in vitro of EGCG, GCG and EGCG3"Me isolated from Oolong tea by human intestinal microbiota[J]. Food Research International, 2013, 54(2): 1589-1595. DOI: 10.1016/j.foodres.2013.10.005.
77.Wang X, Liu F, Cui Y, et al. Apple polyphenols extracts ameliorate high carbohydrate diet-induced body weight gain by regulating the gut microbiota and appetite[J]. J Agric Food Chem, 2022, 70(1): 196-210. DOI: 10.1021/acs.jafc.1c07258.
78.Tveter KM, Mezhibovsky E, Wu Y, et al. Bile acid metabolism and signaling: emerging pharmacological targets of dietary polyphenols[J]. Pharmacol Ther, 2023, 248: 108457. DOI: 10.1016/j.pharmthera.2023.108457.
79.Chambers KF, Day PE, Aboufarrag HT, et al. Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: a review[J]. Nutrients, 2019, 11(11): 2588. DOI: 10.3390/nu11112588.
80.Naumann S, Haller D, Eisner P, et al. Mechanisms of interactions between bile acids and plant compounds-a review[J]. Int J Mol Sci, 2020, 21(18): 6495. DOI: 10.3390/ijms21186495.
81.Liu Y, Huang K, Zhang Y, et al. Dietary polyphenols maintain homeostasis via regulating bile acid metabolism: a review of possible mechanisms[J]. Food Func, 2023, 14(21): 9486-9505. DOI: 10.1039/d3fo02471g.
82.Jiang L, Zhang H, Xiao D, et al. Farnesoid X receptor (FXR): structures and ligands[J]. Comput Struct Biotechnol J, 2021, 19: 2148-2159. DOI: 10.1016/j.csbj.2021.04.029.
83.Stofan M, Guo GL. Bile acids and FXR: novel targets for liver diseases[J]. Front Med (Lausanne), 2020, 7: 544. DOI: 10.3389/fmed.2020.00544.
84.Clifford BL, Sedgeman LR, Williams KJ, et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption[J]. Cell Metab, 2021, 33(8): 1671-1684. DOI: 10.1016/j.cmet.2021. 06.012.
85.Merlen G, Bidault-Jourdainne V, Kahale N, et al. Hepatoprotective impact of the bile acid receptor TGR5[J]. Liver Int, 2020, 40(5): 1005-1015. DOI: 10.1111/liv.14427.
86.Bourgin M, Kriaa A, Mkaouar H, et al. Bile salt hydrolases: at the crossroads of microbiota and human health[J]. Microorganisms, 2021, 9(6): 1122. DOI: 10.3390/microorganisms9061122.
87.Man AWC, Zhou Y, Xia N, et al. Involvement of gut microbiota, microbial metabolites and interaction with polyphenol in host immunometabolism[J]. Nutrients, 2020, 12(10): 3054. DOI: 10.3390/nu12103054.
88.Anhê FF, Varin TV, Le Barz M, et al. Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts[J]. Curr Obes Rep, 2015, 4(4): 389-400. DOI: 10.1007/s13679-015-0172-9.
89.Xia F, Wen LP, Ge BC, et al. Gut microbiota as a target for prevention and treatment of type 2 diabetes: mechanisms and dietary natural products[J]. World J Diabetes, 2021, 12(8): 1146-1163. DOI: 10.4239/wjd.v12.i8.1146.
90.Zhu M, Ouyang J, Zhou F, et al. Polysaccharides from Fu brick tea ameliorate obesity by modulating gut microbiota and gut microbiota-related short chain fatty acid and amino acid metabolism[J]. J Nutr Biochem, 2023, 118: 109356. DOI: 10.1016/j.jnutbio.2023.109356.
91.Wang Z, Zeng M, Wang Z, et al. Food phenolics stimulate adipocyte browning via regulating gut microecology[J]. Crit Rev Food Sci Nutr, 2023, 63(19): 4026-4052. DOI: 10.1080/10408398.2021.1997905.
92.Angiletta CJ, Griffin LE, Steele CN, et al.Impact of short-term flavanol supplementation on fasting plasma trimethylamine N-oxide concentrations in obese adults[J]. Food Funct, 2018, 9(10): 5350-5361. DOI: 10.1039/c8fo00962g.
93.Dehghan P, Farhangi MA, Nikniaz L, et al. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: an exploratory systematic review and dose-response Meta- analysis[J]. Obes Rev, 2020, 21(5): e12993. DOI: 10.1111/obr.12993.
94.Chen ML, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota[J]. mBio, 2016, 7(2): e02210-e2215. DOI: 10.1128/mBio.02210-15.
95.Catalkaya G, Venema K, Lucini L, et al. Interaction of dietary polyphenols and gut microbiota: microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health[J]. Food Frontiers, 2020, 1(2): 109-133. DOI: 10.1002/fft2.25.
96.Cardona F, Andrés-Lacueva C, Tulipani S, et al. Benefits of polyphenols on gut microbiota and implications in human health[J]. J Nutr Biochem, 2013, 24(8): 1415-1422. DOI: 10.1016/j.jnutbio.2013.05.001.
97.Peirotén Á, Bravo D, Landete JM. Bacterial metabolism as responsible of beneficial effects of phytoestrogens on human health[J]. Crit Rev Food Sci Nutr, 2020, 60(11): 1922-1937. DOI: 10.1080/10408398.2019.1622505.
98.Wang TQ, Wu QM, Zhao TQ. Preventive effects of kaempferol on high-fat diet-induced obesity complications in C57BL/6 mice[J]. Biomed Res Int, 2020, 2020: 4532482. DOI: 10.1155/2020/4532482.